Showing
1 - 3
results of
3
for search '
Zumbrun, Kevin
'
Skip to content
Library Home
Start Over
Research Databases
E-Journals
Course Reserves
Library Home
Login to library account
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Language
Library Catalog
All Fields
Title
Author
Subject
Call Number
ISBN/ISSN
Find
Advanced Search
|
Browse
|
Search Tips
Author
Zumbrun, Kevin
Showing
1 - 3
results of
3
for search '
Zumbrun, Kevin
'
, query time: 0.01s
Narrow Search
Sort
Relevance
Newest
Oldest
Call Number
Author
Title
Select all entries on the page
Email
Export
Print
Save
Select result number 1
1
Hyperbolic Systems of Balance Laws Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 14-21, 2003 by Alberto Bressan, Denis Serre, Mark Williams, Kevin Zumbrun ; edited by Pierangelo Marcati.
by
Bressan, Alberto
,
Serre, Denis
,
Williams, Mark
,
Zumbrun, Kevin
Published 2007
Call Number:
Loading…
Located:
Loading…
Click to view e-book
eBook
Save to List
Saved in:
Select result number 2
2
Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems Guy Métivier, Kevin Zumbrun.
by
Métivier, Guy
Published 2005
Other Authors:
“…
Zumbrun, Kevin
…”
Call Number:
Loading…
Located:
Loading…
Book
Loading…
Save to List
Saved in:
Select result number 3
3
Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems Guy Métivier, Kevin Zumbrun.
by
Métivier, Guy
Published 2005
Other Authors:
“…
Zumbrun, Kevin
…”
Click for online access
eBook
Save to List
Saved in:
Select all entries on the page
Email
Export
Print
Save
Search Tools:
Get RSS Feed
Email this Search
Related Subjects
Differential equations, Hyperbolic
Differential equations, Nonlinear
Nonlinear boundary value problems
Continuum physics
Electronic resources (E-books)
Numerical analysis
Partial differential equations