Finiteness and Regularity in Semigroups and Formal Languages by Aldo de Luca, Stefano Varricchio.

The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter­ est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a fin...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca, Aldo de (Author), Varricchio, Stefano (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1999.
Edition:1st ed. 1999.
Series:Monographs in Theoretical Computer Science. An EATCS Series,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3191099
003 MWH
005 20191028021121.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 |a 9783642598494 
024 7 |a 10.1007/978-3-642-59849-4  |2 doi 
035 |a (DE-He213)978-3-642-59849-4 
050 4 |a E-Book 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a UM  |2 thema 
072 7 |a UYF  |2 thema 
100 1 |a Luca, Aldo de.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finiteness and Regularity in Semigroups and Formal Languages  |h [electronic resource] /  |c by Aldo de Luca, Stefano Varricchio. 
250 |a 1st ed. 1999. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1999. 
300 |a X, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monographs in Theoretical Computer Science. An EATCS Series,  |x 1431-2654 
490 1 |a Springer eBook Collection 
505 0 |a 1. Combinatorics on Words -- 1.1 Preliminaries -- 1.2 Infinite words -- 1.3 Metric and topology -- 1.4 Periodicity and conjugacy -- 1.5 Lyndon words -- 1.6 Factorial languages and subword complexity -- 2. Unavoidable Regularities -- 2.1 Ramsey’s theorem -- 2.2 Van der Waerden’s theorem -- 2.3 Uniformly recurrent words -- 2.4 Shirshov’s theorem -- 2.5 Bounded languages -- 2.6 Power-free words -- 2.7 Bi-ideal sequences -- 3. Finiteness Conditions for Semigroups -- 3.1 Preliminaries on semigroups -- 3.2 Finitely generated semigroups -- 3.3 The Burnside problem -- 3.4 Permutation property -- 3.5 Partial commutations -- 3.6 Chain conditions -- 3.7 Iteration property -- 3.8 Permutation and iteration property -- 3.9 Repetitivity -- 4. Finitely Recognizable Semigroups -- 4.1 The Myhill-Nerode theorem -- 4.2 Finitely recognizable semigroups -- 4.3 The factor semigroup -- 4.4 Rewriting systems -- 4.5 The word problem -- 4.6 On a conjecture of Brzozowski -- 4.7 On a conjecture of Brown -- 5. Regularity Conditions -- 5.1 Uniform conditions -- 5.2 Pumping properties -- 5.3 Permutative property -- 6. Well Quasi-orders and Regularity -- 6.1 Well quasi-orders -- 6.2 Higman’s theorem -- 6.3 The generalized Myhill theorem -- 6.4 Quasi-orders and rewriting systems -- 6.5 A regularity condition for permutable languages -- 6.6 Almost-commutative languages -- 6.7 Copying systems -- References. 
520 |a The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter­ est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet which is usually called the theory of "unavoidable" regularities. The unavoidable regularities ofsufficiently large words over a finite alpha­ bet are very important in the study of finiteness conditions for semigroups. This problem consists in considering conditions which are satisfied by a fi­ nite semigroup and are such as to assure that a semigroup satisfying them is finite. The most natural requirement is that the semigroup is finitely gener­ ated. Ifone supposes that the semigroup is also periodic the study offiniteness conditions for these semigroups (or groups) is called the Burnside problem for semigroups (or groups). There exists an important relationship with the theory of finite automata because, as is well known, a language L over a fi­ nite alphabet is regular (that is, recognizable by a finite automaton) if and only if its syntactic monoid S(L) is finite. Hence, in principle, any finite­ ness condition for semigroups can be translated into a regularity condition for languages. The study of finiteness conditions for periodic languages (Le. , such that the syntactic semigroup is periodic) has been called the Burnside problem for languages. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Computer logic. 
650 0 |a Software engineering. 
650 0 |a Computer science—Mathematics. 
650 0 |a Data structures (Computer science). 
650 0 |a Algebra. 
690 |a Electronic resources (E-books) 
700 1 |a Varricchio, Stefano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Monographs in Theoretical Computer Science. An EATCS Series,  |x 1431-2654 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-642-59849-4  |3 Click to view e-book  |t 0 
907 |a .b31910993  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21042627  |z 02-26-20 
999 f f |i e26276d5-df9e-5481-8fb4-c15ea60fb3b8  |s 7b80c537-e27f-5134-837f-1cc7c4be031b  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File