The Langlands Classification and Irreducible Characters for Real Reductive Groups by J. Adams, D. Barbasch, D.A. Vogan.

This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Adams, J. (Author), Barbasch, D. (Author), Vogan, D.A (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1992.
Edition:1st ed. 1992.
Series:Progress in Mathematics, 104
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3195429
003 MWH
005 20191026213604.0
007 cr nn 008mamaa
008 121227s1992 xxu| s |||| 0|eng d
020 |a 9781461203834 
024 7 |a 10.1007/978-1-4612-0383-4  |2 doi 
035 |a (DE-He213)978-1-4612-0383-4 
050 4 |a E-Book 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
100 1 |a Adams, J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Langlands Classification and Irreducible Characters for Real Reductive Groups  |h [electronic resource] /  |c by J. Adams, D. Barbasch, D.A. Vogan. 
250 |a 1st ed. 1992. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 1992. 
300 |a XII, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 104 
490 1 |a Springer eBook Collection 
505 0 |a 1. Introduction -- 2. Structure theory: real forms -- 3. Structure theory: extended groups and Whittaker models -- 4. Structure theory: L-groups -- 5. Langlands parameters and L-homomorphisms -- 6. Geometric parameters -- 7. Complete geometric parameters and perverse sheaves -- 8. Perverse sheaves on the geometric parameter space -- 9. The Langlands classification for tori -- 10. Covering groups and projective representations -- 11. The Langlands classification without L-groups -- 12. Langlands parameters and Cartan subgroups -- 13. Pairings between Cartan subgroups and the proof of Theorem 10.4 -- 14. Proof of Propositions 13.6 and 13.8 -- 15. Multiplicity formulas for representations -- 16. The translation principle, the Kazhdan-Lusztig algorithm, and Theorem 1.24 -- 17. Proof of Theorems 16.22 and 16.24 -- 18. Strongly stable characters and Theorem 1.29 -- 19. Characteristic cycles, micro-packets, and Corollary 1.32 -- 20. Characteristic cycles and Harish-Chandra modules -- 21. The classification theorem and Harish-Chandra modules for the dual group -- 22. Arthur parameters -- 23. Local geometry of constructible sheaves -- 24. Microlocal geometry of perverse sheaves -- 25. A fixed point formula -- 26. Endoscopic lifting -- 27. Special unipotent representations -- References. 
520 |a This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. In the case of real groups, the predicted parametrizations of representations was proved by Langlands himself. Unfortunately, most of the deeper relations suggested by the p-adic theory (between real representation theory and geometry on the space of real Langlands parameters) are not true. The purposed of this book is to redefine the space of real Langlands parameters so as to recover these relationships; informally, to do "Kazhdan-Lusztig theory on the dual group". The new definitions differ from the classical ones in roughly the same way that Deligne’s definition of a Hodge structure differs from the classical one. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Group theory. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Algebra. 
690 |a Electronic resources (E-books) 
700 1 |a Barbasch, D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vogan, D.A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 104 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-0383-4  |3 Click to view e-book  |t 0 
907 |a .b31954297  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 4  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21085924  |z 02-26-20 
999 f f |i 3867ae7c-089a-5c60-a1d7-b56c97d24739  |s 30b948bf-3dd0-5abe-a8bb-88d2d20a8942  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File