Optimization Algorithms and Consistent Approximations / edited by Elijah Polak.

This book deals with optimality conditions, algorithms, and discretization tech­ niques for nonlinear programming, semi-infinite optimization, and optimal con­ trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in t...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Polak, Elijah (Editor)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 1997.
Edition:1st ed. 1997.
Series:Applied Mathematical Sciences, 124
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3197687
003 MWH
005 20191026192245.0
007 cr nn 008mamaa
008 121227s1997 xxu| s |||| 0|eng d
020 |a 9781461206637 
024 7 |a 10.1007/978-1-4612-0663-7  |2 doi 
035 |a (DE-He213)978-1-4612-0663-7 
050 4 |a E-Book 
072 7 |a PBKQ  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBKQ  |2 thema 
072 7 |a PBU  |2 thema 
245 1 0 |a Optimization  |h [electronic resource] :  |b Algorithms and Consistent Approximations /  |c edited by Elijah Polak. 
250 |a 1st ed. 1997. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1997. 
300 |a XX, 782 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 124 
490 1 |a Springer eBook Collection 
505 0 |a Contents: Unconstrained Optimization -- Optimality Conditions -- Algorithm Models and Convergence Conditions I -- Gradient Methods -- Newton's Method -- Methods of Conjugate Directions -- Quasi-Newton Methods -- One Dimensional Optimization -- Newton's Method for Equations and Inequalities -- Finite Minimax and Constrained Optimization -- Optimality Conditions for Minimax -- Optimality Conditions for Constrained Optimization -- Algorithm Models and Convergence Conditions II -- First-Order Minimax Algorithms -- Newton's Method for Minimax Problems -- Phase I. Phase II Methods of Centers -- Penalty Function Algorithms -- An Augmented Lagrangian Method. 
520 |a This book deals with optimality conditions, algorithms, and discretization tech­ niques for nonlinear programming, semi-infinite optimization, and optimal con­ trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con­ sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob­ lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo­ rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab­ lishing optimality conditions for highly complex problems, such as optimal con­ trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Calculus of variations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a System theory. 
650 0 |a Operations research. 
650 0 |a Decision making. 
690 |a Electronic resources (E-books) 
700 1 |a Polak, Elijah.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 124 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-0663-7  |3 Click to view e-book  |t 0 
907 |a .b31976876  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2110850x  |z 02-26-20 
999 f f |i 78d3dd9a-7b98-59fe-aeea-fa38a284ce03  |s 359d93fb-e60e-546e-b4f5-0beccb28293b  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File