Micromachined Ultrasound-Based Proximity Sensors by Mark R. Hornung, Oliver Brand.

Micromachined Ultrasound-Based Proximity Sensors presents a packaged ultrasound microsystem for object detection and distance metering based on micromachined silicon transducer elements. It describes the characterization, optimization and the long-term stability of silicon membrane resonators as wel...

Full description

Saved in:
Bibliographic Details
Main Authors: Hornung, Mark R. (Author), Brand, Oliver (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1999.
Edition:1st ed. 1999.
Series:Microsystems, 4
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3198732
003 MWH
005 20191220125403.0
007 cr nn 008mamaa
008 121227s1999 xxu| s |||| 0|eng d
020 |a 9781461549970 
024 7 |a 10.1007/978-1-4615-4997-0  |2 doi 
035 |a (DE-He213)978-1-4615-4997-0 
050 4 |a E-Book 
072 7 |a THR  |2 bicssc 
072 7 |a TEC007000  |2 bisacsh 
072 7 |a THR  |2 thema 
100 1 |a Hornung, Mark R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Micromachined Ultrasound-Based Proximity Sensors  |h [electronic resource] /  |c by Mark R. Hornung, Oliver Brand. 
250 |a 1st ed. 1999. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 1999. 
300 |a XIII, 121 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Microsystems,  |x 1389-2134 ;  |v 4 
490 1 |a Springer eBook Collection 
505 0 |a 1 Introduction -- 1.1 State of the Art of Ultrasound Proximity Sensors -- 1.2 Scope of this Thesis -- 1.3 Silicon Microsensors -- 1.4 Summary of Practical Results -- 2 Design Considerations For Silicon Resonators -- 2.1 Resonant Behavior of Microstructures -- 2.2 Excitation and Detection Principles -- 2.3 Sound Generation -- 3 Resonator Fabrication -- 3.1 Post IC-Fabrication -- 3.2 Silicon N-Well and Epi Membranes -- 4 Resonator Characterization -- 4.1 Membrane Characteristics -- 4.2 Mode Shapes of Membrane Resonator -- 4.3 Generation of Ultrasound -- 4.4 Sound Pressure Optimization of Resonator -- 4.5 Comparison between N-Well and Epi Membranes -- 4.6 Long Term Stability -- 5 Packaging of Transducers -- 5.1 Packaging Demands -- 5.2 Mounting of Transducers -- 5.3 Sound Emission from Front Side of Membrane -- 5.4 Sound Emission from Rear Side of Membrane -- 6 Ultrasound Barrier -- 6.1 Operation Principle -- 6.2 Packaged Prototype -- 7 Proximity Sensor -- 7.1 Amplitude Measurement with Two Transducers -- 7.2 Amplitude Measurement with One Transducer -- 7.3 Phase Measurement -- 7.4 Comparison between the Different Measurement Methods -- 8 Conclusion and Outlook -- 8.1 Conclusion -- 8.2 Outlook. 
520 |a Micromachined Ultrasound-Based Proximity Sensors presents a packaged ultrasound microsystem for object detection and distance metering based on micromachined silicon transducer elements. It describes the characterization, optimization and the long-term stability of silicon membrane resonators as well as appropriate packaging for ultrasound microsystems. Micromachined Ultrasound-Based Proximity Sensors describes a cost-effective approach to the realization of a micro electro mechanical system (MEMS). The micromachined silicon transducer elements were fabricated using industrial IC technology combined with standard silicon micromachining techniques. Additionally, this approach allows the cointegration of the driving and read-out circuitry. To ensure the industrial applicability of the fabricated transducer elements intensive long-term stability and reliability tests were performed under various environmental conditions such as high temperature and humidity. Great effort was undertaken to investigate the packaging and housing of the ultrasound system, which mainly determine the success or failure of an industrial microsystem. A low-stress mounting of the transducer element minimizes thermomechanical stress influences. The developed housing not only protects the silicon chip but also improves the acoustic performance of the transducer elements. The developed ultrasound proximity sensor system can determine object distances up to 10 cm with an accuracy of better than 0.8 mm. Micromachined Ultrasound-Based Proximity Sensors will be of interest to MEMS researchers as well as those involved in solid-state sensor development. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Electrical engineering. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
690 |a Electronic resources (E-books) 
700 1 |a Brand, Oliver.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Microsystems,  |x 1389-2134 ;  |v 4 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4615-4997-0  |3 Click to view e-book  |t 0 
907 |a .b31987321  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21118966  |z 02-26-20 
999 f f |i d29d86e7-af83-5441-a5ab-8b31bc44a06b  |s f1032a98-36ea-5f08-ae36-618286ad459e  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File