Optical Solitons in Fibers by Akira Hasegawa, Masayuki Matsumoto.

Optical solitons in fibers are a beautiful example of how an abstract mathematical concept has had an impact on new information transmission technologies. The concept of all-optical data transmission with optical soliton systems is now setting the standard for the most advanced transmission systems....

Full description

Saved in:
Bibliographic Details
Main Authors: Hasegawa, Akira (Author), Matsumoto, Masayuki (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Edition:3rd ed. 2003.
Series:Springer Series in Photonics, 9
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3200309
003 MWH
005 20191022063008.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540460640 
024 7 |a 10.1007/978-3-540-46064-0  |2 doi 
035 |a (DE-He213)978-3-540-46064-0 
050 4 |a E-Book 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI051000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
100 1 |a Hasegawa, Akira.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optical Solitons in Fibers  |h [electronic resource] /  |c by Akira Hasegawa, Masayuki Matsumoto. 
250 |a 3rd ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a IX, 201 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Photonics,  |x 1437-0379 ;  |v 9 
490 1 |a Springer eBook Collection 
505 0 |a 1. Introduction -- 2. Wave Motion -- 2.1 What is Wave Motion? -- 2.2 Dispersive and Nonlinear Effects of a Wave -- 2.3 Solitary Waves and the Korteweg de Vries Equation -- 2.4 Solution of the Korteweg de Vries Equation -- 3. Lightwave in Fibers -- 3.1 Polarization Effects -- 3.2 Plane Electromagnetic Waves in Dielectric Materials -- 3.3 Kerr Effect and Kerr Coefficient -- 3.4 Dielectric Waveguides -- 4. Information Transfer in Optical Fibers and Evolution of the Lightwave Packet -- 4.1 How Information is Coded in a Lightwave -- 4.2 How Information is Transferred in Optical Fibers -- 4.3 Master Equation for Information Transfer in Optical Fibers: The Nonlinear Schrödinger Equation -- 4.4 Evolution of the Wave Packet Due to the Group Velocity Dispersion -- 4.5 Evolution of the Wave Packet Due to the Nonlinearity -- 4.6 Technical Data of Dispersion and Nonlinearity in a Real Optical Fiber -- 4.7 Nonlinear Schrödinger Equation and a Solitary Wave Solution -- 4.8 Modulational Instability -- 4.9 Induced Modulational Instability -- 4.10 Modulational Instability Described by the Wave Kinetic Equation -- 5. Optical Solitons in Fibers -- 5.1 Soliton Solutions and the Results of Inverse Scattering -- 5.2 Soliton Periods -- 5.3 Conservation Quantities of the Nonlinear Schrödinger Equation -- 5.4 Dark Solitons -- 5.5 Soliton Perturbation Theory -- 5.6 Effect of Fiber Loss -- 5.7 Effect of the Waveguide Property of a Fiber -- 5.8 Condition of Generation of a Soliton in Optical Fibers -- 5.9 First Experiments on Generation of Optical Solitons -- 6. All-Optical Soliton Transmission Systems -- 6.1 Raman Amplification and Reshaping of Optical Solitons-First Concept of All-Optical Transmission Systems -- 6.2 First Experiments of Soliton Reshaping and of Long Distance Transmission by Raman Amplifications -- 6.3 First Experiment of Soliton Transmission by Means of an Erbium Doped Fiber Amplifier -- 6.4 Concept of the Guiding Center Soliton -- 6.5 The Gordon-Haus Effect and Soliton Timing Jitter -- 6.6 Interaction Between Two Adjacent Solitons -- 6.7 Interaction Between Two Solitons in Different Wavelength Channels -- 7. Control of Optical Solitons -- 7.1 Frequency-Domain Control -- 7.2 Time-Domain Control -- 7.3 Control by Means of Nonlinear Gain -- 7.4 Numerical Examples of Soliton Transmission Control -- 8. Influence of Higher-Order Terms -- 8.1 Self-Frequency Shift of a Soliton Produced by Induced Raman Scattering -- 8.2 Fission of Solitons Produced by Self-Induced Raman Scattering -- 8.3 Effects of Other Higher-Order Dispersion -- 9. Polarization Effects -- 9.1 Fiber Birefringence and Coupled Nonlinear Schrödinger Equations -- 9.2 Solitons in Fibers with Constant Birefringence -- 9.3 Polarization-Mode Dispersion -- 9.4 Solitons in Fibers with Randomly Varying Birefringence -- 10. Dispersion-Managed Solitons (DMS) -- 10.1 Problems in Conventional Soliton Transmission -- 10.2 Dispersion Management with Dispersion-Decreasing Fibers -- 10.3 Dispersion Management with Dispersion Compensation -- 10.4 Quasi Solitons -- 11. Application of Dispersion Managed Solitons for Single-Channel Ultra-High Speed Transmissions -- 11.1 Enhancement of Pulse Energy -- 11.2 Reduction of Gordon-Haus Timing Jitter -- 11.3 Interaction Between Adjacent Pulses -- 11.4 Dense Dispersion Management -- 11.5 Nonstationary RZ Pulse Propagation -- 11.6 Some Recent Experiments -- 12. Application of Dispersion Managed Solitons for WDM Transmission -- 12.1 Frequency Shift Induced by Collisions Between DM Solitons in Different Channels -- 12.2 Temporal Shift Induced by Collisions Between DM Solitons in Different Channels -- 12.3 Doubly Periodic Dispersion Management -- 12.4 Some Recent WDM Experiments Using DM Solitons -- 13. Other Applications of Optical Solitons -- 13.1 Soliton Laser -- 13.2 Pulse Compression -- 13.3 All-Optical Switching -- 13.4 Solitons in Fibers with Gratings -- 13.5 Solitons in Microstructure Optical Fibers -- References. 
520 |a Optical solitons in fibers are a beautiful example of how an abstract mathematical concept has had an impact on new information transmission technologies. The concept of all-optical data transmission with optical soliton systems is now setting the standard for the most advanced transmission systems. The book deals with the motion of light waves in optical fibers, the evolution of light wavepackets, optical information transfer, all-optical soliton transmission systems, the control of optical solitons, polarization effects, dispersion-managed solitons, WDM transmission, soliton lasers, all-optical switching and other applications. This book is a must for all researchers and graduate students active in the field of optical data transmission. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Lasers. 
650 0 |a Photonics. 
650 0 |a Quantum optics. 
650 0 |a Microwaves. 
650 0 |a Optical engineering. 
650 0 |a Electrical engineering. 
690 |a Electronic resources (E-books) 
700 1 |a Matsumoto, Masayuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Series in Photonics,  |x 1437-0379 ;  |v 9 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-540-46064-0  |3 Click to view e-book 
907 |a .b32003092  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
950 |a Physics and Astronomy (Springer-11651) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2113473x  |z 02-26-20 
999 f f |i 0951e8ff-8d5b-57be-bdb1-1c233e561d86  |s 260db2dc-290f-5865-922f-ecfd1ae7b62a 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1