Combinatorial Convexity and Algebraic Geometry by Günter Ewald.

The aim of this book is to provide an introduction for students and nonspecialists to a fascinating relation between combinatorial geometry and algebraic geometry, as it has developed during the last two decades. This relation is known as the theory of toric varieties or sometimes as torus embedding...

Full description

Saved in:
Bibliographic Details
Main Author: Ewald, Günter (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 1996.
Edition:1st ed. 1996.
Series:Graduate Texts in Mathematics, 168
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3204512
003 MWH
005 20191026131443.0
007 cr nn 008mamaa
008 121227s1996 xxu| s |||| 0|eng d
020 |a 9781461240440 
024 7 |a 10.1007/978-1-4612-4044-0  |2 doi 
035 |a (DE-He213)978-1-4612-4044-0 
050 4 |a E-Book 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBV  |2 thema 
100 1 |a Ewald, Günter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Combinatorial Convexity and Algebraic Geometry  |h [electronic resource] /  |c by Günter Ewald. 
250 |a 1st ed. 1996. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1996. 
300 |a XIV, 374 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 168 
490 1 |a Springer eBook Collection 
505 0 |a 1 Combinatorial Convexity -- I. Convex Bodies -- II. Combinatorial theory of polytopes and polyhedral sets -- III. Polyhedral spheres -- IV. Minkowski sum and mixed volume -- V. Lattice polytopes and fans -- 2 Algebraic Geometry -- VI. Toric varieties -- VII. Sheaves and projective toric varieties -- VIII. Cohomology of toric varieties -- Appendix Comments, historical notes, further exercises, research problems, suggestions for further reading -- References -- List of Symbols. 
520 |a The aim of this book is to provide an introduction for students and nonspecialists to a fascinating relation between combinatorial geometry and algebraic geometry, as it has developed during the last two decades. This relation is known as the theory of toric varieties or sometimes as torus embeddings. Chapters I-IV provide a self-contained introduction to the theory of convex poly­ topes and polyhedral sets and can be used independently of any applications to algebraic geometry. Chapter V forms a link between the first and second part of the book. Though its material belongs to combinatorial convexity, its definitions and theorems are motivated by toric varieties. Often they simply translate algebraic geometric facts into combinatorial language. Chapters VI-VIII introduce toric va­ rieties in an elementary way, but one which may not, for specialists, be the most elegant. In considering toric varieties, many of the general notions of algebraic geometry occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book may also serve as an introduction to algebraic geometry and preparation for farther reaching texts about this field. The prerequisites for both parts of the book are standard facts in linear algebra (including some facts on rings and fields) and calculus. Assuming those, all proofs in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter VIII we use a few additional prerequisites with references from appropriate texts. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Combinatorics. 
650 0 |a Algebraic geometry. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 168 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-4044-0  |3 Click to view e-book  |t 0 
907 |a .b32045128  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21176760  |z 02-26-20 
999 f f |i 5c87038d-39ea-52ea-bd27-253336e2c0d4  |s c4b6893b-233d-5517-b7d5-d0c71b61f3ae  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File