Nonlinear Differential Equations and Dynamical Systems by Ferdinand Verhulst.

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awdur: Verhulst, Ferdinand (Awdur)
Awdur Corfforaethol: SpringerLink (Online service)
Fformat: eLyfr
Iaith:English
Cyhoeddwyd: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1996.
Rhifyn:2nd ed. 1996.
Cyfres:Universitext,
Springer eBook Collection.
Pynciau:
Mynediad Ar-lein:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3204752
003 MWH
005 20191022162055.0
007 cr nn 008mamaa
008 121227s1996 gw | s |||| 0|eng d
020 |a 9783642614538 
024 7 |a 10.1007/978-3-642-61453-8  |2 doi 
035 |a (DE-He213)978-3-642-61453-8 
050 4 |a E-Book 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
100 1 |a Verhulst, Ferdinand.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlinear Differential Equations and Dynamical Systems  |h [electronic resource] /  |c by Ferdinand Verhulst. 
250 |a 2nd ed. 1996. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1996. 
300 |a X, 306 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
490 1 |a Springer eBook Collection 
505 0 |a 1 Introduction -- 1.1 Definitions and notation -- 1.2 Existence and uniqueness -- 1.3 Gronwall’s inequality -- 2 Autonomous equations -- 2.1 Phase-space, orbits -- 2.2 Critical points and linearisation -- 2.3 Periodic solutions -- 2.4 First integrals and integral manifolds -- 2.5 Evolution of a volume element, Liouville’s theorem -- 2.6 Exercises -- 3 Critical points -- 3.1 Two-dimensional linear systems -- 3.2 Remarks on three-dimensional linear systems -- 3.3 Critical points of nonlinear equations -- 3.4 Exercises -- 4 Periodic solutions -- 4.1 Bendixson’s criterion -- 4.2 Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem -- 4.3 The Poincaré-Bendixson theorem -- 4.4 Applications of the Poincaré-Bendixson theorem -- 4.5 Periodic solutions in ?n -- 4.6 Exercises -- 5 Introduction to the theory of stability -- 5.1 Simple examples -- 5.2 Stability of equilibrium solutions -- 5.3 Stability of periodic solutions -- 5.4 Linearisation -- 5.5 Exercises -- 6 Linear Equations -- 6.1 Equations with constant coefficients -- 6.2 Equations with coefficients which have a limit -- 6.3 Equations with periodic coefficients -- 6.4 Exercises -- 7 Stability by linearisation -- 7.1 Asymptotic stability of the trivial solution -- 7.2 Instability of the trivial solution -- 7.3 Stability of periodic solutions of autonomous equations -- 7.4 Exercises -- 8 Stability analysis by the direct method -- 8.1 Introduction -- 8.2 Lyapunov functions -- 8.3 Hamiltonian systems and systems with first integrals -- 8.4 Applications and examples -- 8.5 Exercises -- 9 Introduction to perturbation theory -- 9.1 Background and elementary examples -- 9.2 Basic material -- 9.3 Naïve expansion -- 9.4 The Poincaré expansion theorem -- 9.5 Exercises -- 10 The Poincaré-Lindstedt method -- 10.1 Periodic solutions of autonomous second-order equations -- 10.2 Approximation of periodic solutions on arbitrary long time-scales -- 10.3 Periodic solutions of equations with forcing terms -- 10.4 The existence of periodic solutions -- 10.5 Exercises -- 11 The method of averaging -- 11.1 Introduction -- 11.2 The Lagrange standard form -- 11.3 Averaging in the periodic case -- 11.4 Averaging in the general case -- 11.5 Adiabatic invariants -- 11.6 Averaging over one angle, resonance manifolds -- 11.7 Averaging over more than one angle, an introduction -- 11.8 Periodic solutions -- 11.9 Exercises -- 12 Relaxation Oscillations -- 12.1 Introduction -- 12.2 Mechanical systems with large friction -- 12.3 The van der Pol-equation -- 12.4 The Volterra-Lotka equations -- 12.5 Exercises -- 13 Bifurcation Theory -- 13.1 Introduction -- 13.2 Normalisation -- 13.3 Averaging and normalisation -- 13.4 Centre manifolds -- 13.5 Bifurcation of equilibrium solutions and Hopf bifurcation -- 13.6 Exercises -- 14 Chaos -- 14.1 Introduction and historical context -- 14.2 The Lorenz-equations -- 14.3 Maps associated with the Lorenz-equations -- 14.4 One-dimensional dynamics -- 14.5 One-dimensional chaos: the quadratic map -- 14.6 One-dimensional chaos: the tent map -- 14.7 Fractal sets -- 14.8 Dynamical characterisations of fractal sets -- 14.9 Lyapunov exponents -- 14.10 Ideas and references to the literature -- 15 Hamiltonian systems -- 15.1 Introduction -- 15.2 A nonlinear example with two degrees of freedom -- 15.3 Birkhoff-normalisation -- 15.4 The phenomenon of recurrence -- 15.5 Periodic solutions -- 15.6 Invariant tori and chaos -- 15.7 The KAM theorem -- 15.8 Exercises -- Appendix 1: The Morse lemma -- Appendix 2: Linear periodic equations with a small parameter -- Appendix 3: Trigonometric formulas and averages -- Appendix 4: A sketch of Cotton’s proof of the stable and unstable manifold theorem 3.3 -- Appendix 5: Bifurcations of self-excited oscillations -- Appendix 6: Normal forms of Hamiltonian systems near equilibria -- Answers and hints to the exercises -- References. 
520 |a On the subject of differential equations many elementary books have been written. This book bridges the gap between elementary courses and research literature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed first. Stability theory is then developed starting with linearisation methods going back to Lyapunov and Poincaré. In the last four chapters more advanced topics like relaxation oscillations, bifurcation theory, chaos in mappings and differential equations, Hamiltonian systems are introduced, leading up to the frontiers of current research: thus the reader can start to work on open research problems, after studying this book. This new edition contains an extensive analysis of fractal sets with dynamical aspects like the correlation- and information dimension. In Hamiltonian systems, topics like Birkhoff normal forms and the Poincaré-Birkhoff theorem on periodic solutions have been added. There are now 6 appendices with new material on invariant manifolds, bifurcation of strongly nonlinear self-excited systems and normal forms of Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, and is illustrated by many examples. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Physics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Universitext,  |x 0172-5939 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-642-61453-8  |3 Click to view e-book 
907 |a .b32047526  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21179165  |z 02-26-20 
999 f f |i 27647c8b-6771-55d3-b7d6-8038a7c16019  |s 9dda4671-47a2-5b58-afde-d6a5d20d5a0d 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1