Coding Theorems of Information Theory by Jacob Wolfowitz.

The imminent exhaustion of the first printing of this monograph and the kind willingness of the publishers have presented me with the opportunity to correct a few minor misprints and to make a number of additions to the first edition. Some of these additions are in the form of remarks scattered thro...

Full description

Saved in:
Bibliographic Details
Main Author: Wolfowitz, Jacob (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1964.
Edition:2nd ed. 1964.
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, A Series of Modern Surveys in Mathematics ; 31
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3206850
003 MWH
005 20191025211334.0
007 cr nn 008mamaa
008 121227s1964 gw | s |||| 0|eng d
020 |a 9783662002377 
024 7 |a 10.1007/978-3-662-00237-7  |2 doi 
035 |a (DE-He213)978-3-662-00237-7 
050 4 |a E-Book 
072 7 |a GPJ  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a GPJ  |2 thema 
072 7 |a GPF  |2 thema 
100 1 |a Wolfowitz, Jacob.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Coding Theorems of Information Theory  |h [electronic resource] /  |c by Jacob Wolfowitz. 
250 |a 2nd ed. 1964. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1964. 
300 |a 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, A Series of Modern Surveys in Mathematics ;  |v 31 
490 1 |a Springer eBook Collection 
505 0 |a 1. Heuristic Introduction to the Discrete Memoryless Channel -- 2. Combinatorial Preliminaries. -- 2.1. Generated sequences -- 2.2. Properties of the entropy function -- 3. The Discrete Memoryless Channel -- 3.1. Description of the channel -- 3.2. A coding theorem -- 3.3. The strong converse -- 3.4. Strong converse for the binary symmetric channel -- 3.5. The finite-state channel with state calculable by both sender and receiver -- 3.6. The finite-state channel with state calculable only by the sender -- 4. Compound Channels -- 4.1. Introduction -- 4.2. The canonical channel -- 4.3. A coding theorem -- 4.4. Strong converse -- 4.5. Compound d.m.c. with c.p.f. known only to the receiver or only to the sender -- 4.6. Channels where the c.p.f. for each letter is stochastically deter-mined -- 4.7. Proof of Theorem 4.6 4 -- 4.8. The d.m.c. with feedback -- 4.9. Strong converse for the d.m.c. with feedback -- 5. The Discrete Finite-Memory Channel. -- 5.1. The discrete channel -- 5.2. The discrete finite-memory channel -- 5.3. The coding theorem for the d.f.m.c -- 5.4. Strong converse of the coding theorem for the d.f.m.c -- 5.5. Rapidity of approach to C in the d.f.m.c -- 5.6. Discussion of the d.f.m.c -- 6. Discrete Channels with a Past History. -- 6.1. Preliminary discussion -- 6.2. Channels with a past history -- 6.3. Applicability of the coding theorems of Section 7.2 to channels with a past history -- 6.4. A channel with infinite duration of memory of previously transmitted letters -- 6.5. A channel with infinite duration of memory of previously received letters -- 6.6. Indecomposable channels -- 6.7. The power of the memory -- 7. General Discrete Channels -- 7.1. Alternative description of the general discrete channel -- 7.2. The method of maximal codes -- 7.3. The method of random codes -- 7.4. Weak converses -- 7.5. Digression on the d.m.c -- 7.6. Discussion of the foregoing -- 7.7. Channels without a capacity -- 8. The Semi-Continuous Memoryless Channel -- 8.1. Introduction -- 8.2. Strong converse of the coding theorem for the s.c.m.c -- 8.3. Proof of Lemma 8.2.1 -- 8.4. The strong converse with (math) in the exponent -- 9. Continuous Channels with Additive Gaussian Noise. -- 9.1. A continuous memoryless channel with additive Gaussian noise -- 9.2. Message sequences within a suitable sphere -- 9.3. Message sequences on the periphery of the sphere or within a shell adjacent to the boundary -- 9.4. Another proof of Theorems 9.2.1 and 9.2.2 -- 10. Mathematical Miscellanea -- 10.1. Introduction -- 10.2. The asymptotic equipartition property -- 10.3. Admissibility of an ergodic input for a discrete finite-memory channel -- 11. Group Codes. Sequential Decoding. -- 11.1. Group Codes -- 11.2. Canonical form of the matrix M -- 11.3. Sliding parity check codes -- 11.4. Sequential decoding -- References -- List of Channels Studied or Mentioned. 
520 |a The imminent exhaustion of the first printing of this monograph and the kind willingness of the publishers have presented me with the opportunity to correct a few minor misprints and to make a number of additions to the first edition. Some of these additions are in the form of remarks scattered throughout the monograph. The principal additions are Chapter 11, most of Section 6. 6 (inc1uding Theorem 6. 6. 2), Sections 6. 7, 7. 7, and 4. 9. It has been impossible to inc1ude all the novel and inter­ esting results which have appeared in the last three years. I hope to inc1ude these in a new edition or a new monograph, to be written in a few years when the main new currents of research are more clearly visible. There are now several instances where, in the first edition, only a weak converse was proved, and, in the present edition, the proof of a strong converse is given. Where the proof of the weaker theorem em­ ploys a method of general application and interest it has been retained and is given along with the proof of the stronger result. This is wholly in accord with the purpose of the present monograph, which is not only to prove the principal coding theorems but also, while doing so, to acquaint the reader with the most fruitful and interesting ideas and methods used in the theory. I am indebted to Dr. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Mathematics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, A Series of Modern Surveys in Mathematics ;  |v 31 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-662-00237-7  |3 Click to view e-book  |t 0 
907 |a .b32068505  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21200154  |z 02-26-20 
999 f f |i dcefccb4-df3b-568e-9924-29e9447bc0c2  |s e515346f-577c-5486-a207-cf3112137a72  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File