All of Statistics A Concise Course in Statistical Inference / by Larry Wasserman.

This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wide...

Full description

Saved in:
Bibliographic Details
Main Author: Wasserman, Larry (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2004.
Edition:1st ed. 2004.
Series:Springer Texts in Statistics,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3208225
003 MWH
005 20191023182402.0
007 cr nn 008mamaa
008 131129s2004 xxu| s |||| 0|eng d
020 |a 9780387217369 
024 7 |a 10.1007/978-0-387-21736-9  |2 doi 
035 |a (DE-He213)978-0-387-21736-9 
050 4 |a E-Book 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
100 1 |a Wasserman, Larry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a All of Statistics  |h [electronic resource] :  |b A Concise Course in Statistical Inference /  |c by Larry Wasserman. 
250 |a 1st ed. 2004. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2004. 
300 |a XX, 442 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
490 1 |a Springer eBook Collection 
505 0 |a Probability -- Random Variables -- Expectation -- Inequalities -- Convergence of Random Variables -- Models, Statistical Inference and Learning -- Estimating the CDF and Statistical Functionals -- The Bootstrap -- Parametric Inference -- Hypothesis Testing and p-values -- Bayesian Inference -- Statistical Decision Theory -- Linear and Logistic Regression -- Multivariate Models -- Inference about Independence -- Causal Inference -- Directed Graphs and Conditional Independence -- Undirected Graphs -- Loglinear Models -- Nonparametric Curve Estimation -- Smoothing Using Orthogonal Functions -- Classification -- Probability Redux: Stochastic Processes -- Simulation Methods. 
520 |a This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de Montreal–Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-0-387-21736-9  |3 Click to view e-book  |t 0 
907 |a .b32082253  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21213902  |z 02-26-20 
999 f f |i 8d38abf3-00c4-5175-a909-68bdf92d2a1a  |s e33f8f34-8a6e-5127-b4fd-e29c85c862d4  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File