Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen, FINN VERNER JENSEN.

Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they c...

Full description

Saved in:
Bibliographic Details
Main Authors: Nielsen, Thomas Dyhre (Author), VERNER JENSEN, FINN (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2001.
Edition:1st ed. 2001.
Series:Information Science and Statistics,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3208448
003 MWH
005 20191026021028.0
007 cr nn 008mamaa
008 130607s2001 xxu| s |||| 0|eng d
020 |a 9781475735024 
024 7 |a 10.1007/978-1-4757-3502-4  |2 doi 
035 |a (DE-He213)978-1-4757-3502-4 
050 4 |a E-Book 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
100 1 |a Nielsen, Thomas Dyhre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Networks and Decision Graphs  |h [electronic resource] /  |c by Thomas Dyhre Nielsen, FINN VERNER JENSEN. 
250 |a 1st ed. 2001. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2001. 
300 |a XV, 268 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
490 1 |a Springer eBook Collection 
505 0 |a I A Practical Guide to Normative Systems -- 1 Causal and Bayesian Networks -- 2 Building Models -- 3 Learning, Adaptation, and Tuning -- 4 Decision Graphs -- II Algorithms for Normative Systems -- 5 Belief Updating in Bayesian Networks -- 6 Bayesian Network Analysis Tools -- 7 Algorithms for Influence Diagrams -- List of Notation. 
520 |a Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they can easily be compiled. Furthermore, handy algorithms are developed for analyses of the models and for providing responses to a wide range of requests such as belief updating, determining optimal strategies, conflict analyses of evidence, and most probable explanation. The book emphasizes both the human and the computer sides. Part I gives a thorough introduction to Bayesian networks as well as decision trees and infulence diagrams, and through examples and exercises, the reader is instructed in building graphical models from domain knowledge. This part is self-contained and it does not require other background than standard secondary school mathematics. Part II is devoted to the presentation of algorithms and complexity issues. This part is also self-contained, but it requires that the reader is familiar with working with texts in the mathematical language. The author also: - provides a well-founded practical introduction to Bayesian networks, decision trees and influence diagrams; - gives several examples and exercises exploiting the computer systems for Bayesian netowrks and influence diagrams; - gives practical advice on constructiong Bayesian networks and influence diagrams from domain knowledge; - embeds decision making into the framework of Bayesian networks; - presents in detail the currently most efficient algorithms for probability updating in Bayesian networks; - discusses a wide range of analyes tools and model requests together with algorithms for calculation of responses; - gives a detailed presentation of the currently most efficient algorithm for solving influence diagrams. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Statistics . 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
690 |a Electronic resources (E-books) 
700 1 |a VERNER JENSEN, FINN.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Information Science and Statistics,  |x 1613-9011 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4757-3502-4  |3 Click to view e-book  |t 0 
907 |a .b32084481  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21216137  |z 02-26-20 
999 f f |i 117c42f2-19ae-5d2e-9d6b-40bcaab38703  |s 12fb53d6-e0e3-5dee-aa56-b74b521c2a51  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File