Kleinian Groups by Bernard Maskit.

The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. Fro...

Full description

Saved in:
Bibliographic Details
Main Author: Maskit, Bernard (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1988.
Edition:1st ed. 1988.
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 287
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3211651
003 MWH
005 20191023142713.0
007 cr nn 008mamaa
008 121227s1988 gw | s |||| 0|eng d
020 |a 9783642615900 
024 7 |a 10.1007/978-3-642-61590-0  |2 doi 
035 |a (DE-He213)978-3-642-61590-0 
050 4 |a E-Book 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
100 1 |a Maskit, Bernard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Kleinian Groups  |h [electronic resource] /  |c by Bernard Maskit. 
250 |a 1st ed. 1988. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1988. 
300 |a XIII, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 287 
490 1 |a Springer eBook Collection 
505 0 |a I. Fractional Linear Transformations -- I.A. Basic Concepts -- I.B. Classification of Fractional Linear Transformations -- I.C. Isometric Circles -- I.D. Commutators -- I.E. Fractional Reflections -- I.F. Exercises -- II. Discontinuous Groups in the Plane -- II.A. Discontinuous Groups -- II.B. Area, Diameter, and Convergence -- II.C. Inequalities for Discrete Groups -- II.D. The Limit Set -- II.E. The Partition of C -- II.F. Riemann Surfaces -- II.G. Fundamental Domains -- II.H. The Ford Region -- II.I. Precisely Invariant Sets -- II.J. Isomorphisms -- II.K. Exercises -- II.L. Notes -- III. Covering Spaces -- III.A. Coverings -- III.B. Regular Coverings -- III.C. Lifting Loops and Regions -- III.D. Lifting Mappings -- III.E. Pairs of Regular Coverings -- III.F. Branched Regular Coverings -- III.G. Exercises -- IV. Groups of Isometries -- IV.A. The Basic Spaces and their Groups -- IV.B. Hyperbolic Geometry -- IV.C. Classification of Elements of Cn -- IV.D. Convex Sets -- IV.E. Discrete Groups of Isometries -- IV.F. Fundamental Polyhedrons -- IV.G. The Dirichlet and Ford Regions -- IV.H. Poincaré’s Polyhedron Theorem -- IV.I. Special Cases -- IV.J. Exercises -- IV.K. Notes -- V. The Geometric Basic Groups -- V.A. Basic Signatures -- V.B. Half-Turns -- V.C. The Finite Groups -- V.D. The Euclidean Groups -- V.E. Applications to Non-Elementary Groups -- V.F. Groups with Two Limit Points -- V.G. Fuchsian Groups -- V.H. Isomorphisms -- V.I. Exercises -- V.J. Notes -- VI. Geometrically Finite Groups -- VI. A. The Boundary at Infinity of a Fundamental Polyhedron -- VI.B. Points of Approximation -- VI.C. Action near the Limit Set -- VI.D. Essentially Compact 3-Manifolds -- VI.E. Applications -- VI.F. Exercises -- VI.G. Notes -- VII. Combination Theorems -- VII.A. Combinatorial Group Theory — I -- VII.B. Blocks and Spanning Discs -- VII.C. The First Combination Theorem -- VII.D. Combinatorial Group Theory — II -- VII.E. The Second Combination Theorem -- VII.F. Exercises -- VII.G. Notes -- VIII. A Trip to the Zoo -- VIII.A. The Circle Packing Trick -- VIII.B. Simultaneous Uniformization -- VIII.C. Elliptic Cyclic Constructions -- VIII.D. Fuchsian Groups of the Second Kind -- VIII.E. Loxodromic Cyclic Constructions -- VIII.F. Strings of Beads -- VIII.G. Miscellaneous Examples -- VIII.H. Exercises -- VIII.I. Notes -- IX. B-Groups -- IX.A. An Inequality -- IX.B. Similarities -- IX.C. Rigidity of Triangle Groups -- IX.D. B-Group Basics -- IX.E. An Isomorphism Theorem -- IX.F. Quasifuchsian Groups -- IX.G. Degenerate Groups -- IX.H. Groups with Accidental Parabolic Transformations -- IX.I. Exercises -- IX.J. Notes -- X. Function Groups -- X.A. The Planarity Theorem -- X.B. Panels Defined by Simple Loops -- X.C. Structure Subgroups -- X.D. Signatures -- X.E. Decomposition -- X.F. Existence -- X.G. Similarities and Deformations -- X.H. Schottky Groups -- X.I. Fuchsian Groups Revisited -- X.J. Exercises -- X.K. Notes -- Special Symbols. 
520 |a The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome­ try, and there is now an active school of research using these methods. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 0 |a Algebraic geometry. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 287 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-642-61590-0  |3 Click to view e-book  |t 0 
907 |a .b32116512  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21248163  |z 02-26-20 
999 f f |i 9ab1aef3-f969-56dd-9aca-9fc29d622abc  |s cdc4d5cf-819d-5cbc-b9c7-dc52e2a9bda0  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File