Recent Developments in Insect Neurohormones by M. Raabe.

The most striking fact revealed by investigations of insect neurohormones is that insects are as well supplied with neurohormones as mammals, since neurohor­ mones regulate not only the functioning of the endocrine glands, prothoracic gland, and corpora allata, but also most physiological processes....

Full description

Saved in:
Bibliographic Details
Main Author: Raabe, M. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1989.
Edition:1st ed. 1989.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • 1 Synthesis and Release Sites of Neurohormones
  • 1.1. From the Original Concept of Neurosecretion to Contemporary Views
  • 1.2. Classical Insect Neurosecretory Cells
  • 1.3. Neurosecretory Pathways
  • 1. 4. Release Sites
  • 1.5. Regulation of Neurohormone Production and Release
  • 1.6. Aminergic Neurons
  • 1.7. Concluding Remarks
  • 2 Vertebrate and Invertebrate Neuropeptides in Insects
  • 2.1. Insect Neurons Immunoreactive to Vertebrate Peptide Antisera
  • 2.2. Insect Neurons Immunoreactive to Invertebrate Neurohormones
  • 2.3. Insect Neurons Immunoreactive to Insect Neurohormones
  • 2.4. Distribution of Immunoreactive Products
  • 2.5. Immunoreactive Neurons and Neurosecretory Cells
  • 2.6. Cross-Reactions—Colocation of Immunoreactive Peptides
  • 2.7. Concluding Remarks
  • 3 Control of Prothoracic Gland Activity
  • 3.1. Prothoracic Gland Innervation and Ultrastructure
  • 3.2. Prothoracic Gland Degeneration
  • 3.3. PTTH Assays
  • 3.4. Timing of PTTH Release
  • 3.5. PTTH Production and Release Sites
  • 3.6. Purification of PTTH
  • 3.7. PTTH Action Mechanism
  • 3.8. Is PG Regulated by Factors Other Than PTTH?
  • 3.9. Conclusion
  • 4 Regulation of Corpora Allata Activity and Juvenile Hormone Titer
  • 5 Diapause
  • 5.1. Imaginal Diapause
  • 5.2. Pupal Diapause
  • 5.3. Larval Diapause
  • 5.4. Embryonic Diapause
  • 5.5. Purification of the Embryonic Diapause Factor
  • 5.6. Conclusions
  • 6 Reproduction
  • 7 Muscle Activity
  • 7.1. Visceral Muscles
  • 7.2. Skeletal Muscles
  • 7.3. Separation and Identification of Myotropic Peptides
  • 7.4. Leucokinins, Leucopyrokinins, Leucomyosuppressins, and Leucosulfakinins
  • 7.5. Action Mechanism of Myotropic Factors
  • 8 Ecdysis and Tanning
  • 8.1. Eclosion—Molting
  • 8.2. Bursicon
  • 8.3. Pupariation
  • 8.4. Neurohormone Identification
  • 8.5. Mode of Action
  • 8.6. Concluding Remarks
  • 9 Pigment Synthesis and Breakdown—Color Change
  • 9.1. Pigment Synthesis and Breakdown
  • 9.2. Pigment Migrations
  • 10 Osmoregulation
  • 10.1. Methods
  • 10.2. Diuretic Hormone
  • 10.3. Biogenic Amines
  • 10.4. Antidiuretic Hormone
  • 10.5. Ion Metabolism
  • 10.6. Juvenile Hormone and Ecdysone
  • 10.7. Purification of Hormones Involved in Osmoregulation
  • 10.8. Mode of Action of Hormones Regulating Osmoregulation
  • 10.9. Conclusions
  • 11 Metabolism
  • 11.1. Lipid and Carbohydrate Metabolism
  • 11.2. Protein Metabolism
  • 11.3. Proteases and Amylases
  • 11.4. Respiratory Metabolism
  • 11.5. Origin and Release Sites of Metabolic Hormones
  • 11.6. Mode of Action of Metabolic Hormones
  • 11.7. Breakdown of Metabolic Hormones
  • 11.8. Conclusion
  • 12 Miscellaneous
  • 12.1. Locomotor Activity
  • 12.2. Flight
  • 12.3. Endogenous Nerve Activity Stress
  • 12.4. Polymorphism
  • Concluding Remarks
  • Addendum
  • A.1. Synthesis and Release Sites of Neurohormones
  • A.1.1. Neuroanatomical Studies
  • A.1.2. Peripheral ns Ganglia
  • A.1.3. Biogenic Amines
  • A.2. Vertebrate and Invertebrate Neuropeptides in Insects
  • A.2.1. Vertebrate Peptides
  • A.2.2. Molluscan FMRFamide
  • A.2.3. Insect Peptides
  • A.3. Control of Prothoracic Gland Activity
  • A.3.1. Hemolymph Protein Factor—Juvenile Hormone
  • A.3.2. Ecdysteroid Production Outside Prothoracic Gland
  • A.3.3. Brain-Ring Gland Interrelationships
  • A.4. Control of Juvenile Hormone Activity
  • A.4.1. Juvenile Hormone Diversity
  • A.4.2. Azadirachtin
  • A.4.3. Regulation by Octopamine of CA Synthetic Activity
  • A.4.4. JH Binding Proteins and JH Esterases
  • A.5. Embryonic Diapause
  • A.6. Reproduction
  • A.6.1. Vitellogenesis Regulation in Mosquitoes
  • A.6.2. Vitellogenesis Regulation in Flies
  • A.6.3. Vitellogenesis Regulation in Firebrats
  • A.6.4. Embryonic Ecdysteroids
  • A.6.5. A New Function for Oostatic Hormone
  • A.6.6.Spermatogenesis
  • A.7. Muscle Activity
  • A.7.1. Hyperneural Muscle
  • A.7.2. Modulatory Role of Proctolin
  • A.8. Pigment Synthesis and Breakdown
  • A.9. Osmoregulation
  • A.9.1. Identification of Active Factors
  • A.9.2. Biogenic Amines
  • A.10. Metabolism
  • A.10.1. AKH and Lipid Synthesis
  • A.10. 2. New Members of the AKH Family
  • A.10.3. Other Metabolic Factors
  • A.10.4. Proteolytic Enzymes
  • A.10.5. Mode of Action of Metabolic Hormones
  • A.11. Miscellaneous
  • References
  • Species Index.