Mathematical Analysis and Numerical Methods for Science and Technology Volume 5 Evolution Problems I / by Robert Dautray, Jacques-Louis Lions.

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition...

Full description

Saved in:
Bibliographic Details
Main Authors: Dautray, Robert. (Author, http://id.loc.gov/vocabulary/relators/aut), Lions, Jacques-Louis. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Edition:1st ed. 2000.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
LEADER 06017nam a22005535i 4500
001 b3216570
003 MWH
005 20191028131847.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783642580901 
024 7 |a 10.1007/978-3-642-58090-1  |2 doi 
035 |a (DE-He213)978-3-642-58090-1 
050 4 |a E-Book 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
100 1 |a Dautray, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Analysis and Numerical Methods for Science and Technology  |h [electronic resource] :  |b Volume 5 Evolution Problems I /  |c by Robert Dautray, Jacques-Louis Lions. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XIV, 739 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a XIV. Evolution Problems: Cauchy Problems in IRn -- §1. The Ordinary Cauchy Problems in Finite Dimensional Spaces -- §2. Diffusion Equations -- §3. Wave Equations -- §4. The Cauchy Problem for the Schrödinger Equation, Introduction -- §5. The Cauchy Problem for Evolution Equations Related to Convolution Products -- §6. An Abstract Cauchy Problem. Ovsyannikov’s Theorem -- Review of Chapter XIV -- XV. Evolution Problems: The Method of Diagonalisation -- §1. The Fourier Method or the Method of Diagonalisation -- §2. Variations. The Method of Diagonalisation for an Operator Having Continuous Spectrum -- §3. Examples of Application: The Diffusion Equation -- §4. The Wave Equation: Mathematical Examples and Examples of Application -- §5. The Schrödinger Equation -- §6. Application with an Operator Having a Continuous Spectrum: Example -- Review of Chapter XV -- Appendix. Return to the Problem of Vibrating Strings -- XVI. Evolution Problems: The Method of the Laplace Transform -- §1. Laplace Transform of Distributions -- §2. Laplace Transform of Vector-valued Distributions -- §3. Applications to First Order Evolution Problems -- §4. Evolution Problems of Second Order in t -- §5. Applications -- Review of Chapter XVI -- XVII. Evolution Problems: The Method of Semigroups -- A. Study of Semigroups -- §1. Definitions and Properties of Semigroups Acting in a Banach Space -- §2. The Infinitesimal Generator of a Semigroup -- §3. The Hille—Yosida Theorem -- §4. The Case of Groups of Class &0 and Stone’s Theorem -- §5. Differentiable Semigroups -- §6. Holomorphic Semigroups -- §7. Compact Semigroups -- B. Cauchy Problems and Semigroups -- §1. Cauchy Problems -- §2. Asymptotic Behaviour of Solutions as t ? + ?. Conservation and Dissipation in Evolution Equations -- §3. Semigroups and Diffusion Problems -- §4. Groups and Evolution Equations -- §5. Evolution Operators in Quantum Physics. The Liouville—von Neumann Equation -- §6. Trotter’s Approximation Theorem -- Summary of Chapter XVII -- XVIII. Evolution Problems: Variational Methods -- Orientation -- §1. Some Elements of Functional Analysis -- §2. Galerkin Approximation of a Hilbert Space -- §3. Evolution Problems of First Order in t -- §4. Problems of First Order in t (Examples) -- §5. Evolution Problems of Second Order in t -- §6. Problems of Second Order in t. Examples -- §7. Other Types of Equation -- Review of Chapter XVIII -- Table of Notations -- of Volumes 1–4, 6. 
520 |a 299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
690 |a Electronic resources (E-books) 
700 1 |a Lions, Jacques-Louis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-642-58090-1  |3 Click to view e-book 
907 |a .b32165705  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21297356  |z 02-26-20 
999 f f |i 5ff89b1b-8531-54de-a002-33856f8c450c  |s 15f39ad7-b973-59d0-9369-bb847feb595a 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d E-resources  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1