Anticipatory Learning Classifier Systems by Martin V. Butz.

Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to...

Full description

Saved in:
Bibliographic Details
Main Author: Butz, Martin V. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2002.
Edition:1st ed. 2002.
Series:Genetic Algorithms and Evolutionary Computation, 4
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Description
Summary:Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior. Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational module. The book focuses on a particular evolutionary model learning mechanism, a combination of a directed specializing mechanism and a genetic generalizing mechanism. Experiments show that anticipatory adaptive behavior can be simulated by exploiting the evolving anticipatory model for even faster model learning, planning applications, and adaptive behavior beyond reinforcement learning. Anticipatory Learning Classifier Systems gives a detailed algorithmic description as well as a program documentation of a C++ implementation of the system.
Physical Description:XXVIII, 172 p. online resource.
ISBN:9781461508915
ISSN:1568-2587 ;
DOI:10.1007/978-1-4615-0891-5