Topics in Quantum Mechanics by Floyd Williams.

Quantum mechanics and quantum field theory are highly successful physical theo­ ries that have numerous practical applications. Largely mathematical in character, these theories continue to stimulate the imaginations of applied mathematicians and purists as weIl. In recent years, in particular, as a...

Full description

Saved in:
Bibliographic Details
Main Author: Williams, Floyd (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2003.
Edition:1st ed. 2003.
Series:Progress in Mathematical Physics, 27
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3219540
003 MWH
005 20191027193209.0
007 cr nn 008mamaa
008 121227s2003 xxu| s |||| 0|eng d
020 |a 9781461200093 
024 7 |a 10.1007/978-1-4612-0009-3  |2 doi 
035 |a (DE-He213)978-1-4612-0009-3 
050 4 |a E-Book 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
100 1 |a Williams, Floyd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topics in Quantum Mechanics  |h [electronic resource] /  |c by Floyd Williams. 
250 |a 1st ed. 2003. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2003. 
300 |a XV, 398 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics,  |x 1544-9998 ;  |v 27 
490 1 |a Springer eBook Collection 
505 0 |a I Introductory Concepts in Quantum Theory -- 0 Units of Measurement -- 1 Quantum Mechanics: Some Remarks and Themes -- 2 Equations of Motion in Classical Mechanics -- 3 Quantization and the Schrödinger Equation -- 4 Hypergeometric Equations and Special Functions -- 5 Hydrogen-like Atoms -- 6 Heisenberg’s Uncertainty Principle -- 7 Group Representations and Selection Rules -- 8 The Quantized Hamiltonian for a Charged Particle in an Electromagnetic Field -- 9 Spin Wave Functions -- 10 Introduction to Multi-Electron Atoms -- II Some Selected Topics -- 11 Fresnel Integrals and Feynman Integrals -- 12 Path Integral for the Harmonic Oscillator -- 13 Euclidean Path Integrals -- 14 The Density Matrix and Partition Function in Quantum Statistical Mechanics -- 15 Zeta Regularization -- 16 Helmholtz Free Energy for Certain Negatively Curved Space-Times, and the Selberg Trace Formula -- 17 The Zeta Function of a Product of Laplace Operators and the Multiplicative Anomaly for X?d -- 18 Schrödinger’s Equation and Gauge Theory -- About the Author -- General Appendices -- Appendix A: Some Further Electron Configurations -- Appendix B: Mendeléev Periodic Table -- Appendix C: Determinants for String World-Sheets That Are Tori: Another Example of Zeta Regularization -- Appendix E: Some Informal Comments on QFT -- References. 
520 |a Quantum mechanics and quantum field theory are highly successful physical theo­ ries that have numerous practical applications. Largely mathematical in character, these theories continue to stimulate the imaginations of applied mathematicians and purists as weIl. In recent years, in particular, as a new array of tools have emerged, including a representative amount from the domain of so-called pure mathematics, interest in both the conceptual and physical aspects of these beau­ tiful subjects has especially blossomed. Given the emergence of newer and of­ ten spectacular applications of mathematics to quantum theory, and to theoretical physics in general, one notes that certain communication gaps between physicists and mathematicians continue to be bridged. This text on quantum mechanics, designed primarily for mathematics students and researchers, is an attempt to bridge further gaps. Although the mathematical style presented is generally precise, it is counterbalanced at some points by a re­ laxation of precision, as our overall purpose is to capture the basic fiavor of the subject both formally and intuitively. The approach is one in which we attempt to maintain sensitivity with respect to diverse backgrounds of the readers, including those with modest backgrounds in physics. Thus we have included several con­ crete computational examples to fortify stated principles, several appendices, and certain basic physical concepts that help to provide for a reasonably self-contained account of the material, especially in the first 11 chapters. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Number theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Quantum physics. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Progress in Mathematical Physics,  |x 1544-9998 ;  |v 27 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-0009-3  |3 Click to view e-book  |t 0 
907 |a .b32195400  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21327051  |z 02-26-20 
999 f f |i c61d5391-f7a5-5fe1-882b-327d3c2dbc66  |s f43aea1e-1140-54e7-8b11-33bc3ef9e2d1  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File