Complex Tori by Herbert Lange, Christina Birkenhake.

A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =.

Saved in:
Bibliographic Details
Main Authors: Lange, Herbert (Author), Birkenhake, Christina (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1999.
Edition:1st ed. 1999.
Series:Progress in Mathematics, 177
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3220425
003 MWH
005 20191027111622.0
007 cr nn 008mamaa
008 121227s1999 xxu| s |||| 0|eng d
020 |a 9781461215660 
024 7 |a 10.1007/978-1-4612-1566-0  |2 doi 
035 |a (DE-He213)978-1-4612-1566-0 
050 4 |a E-Book 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
100 1 |a Lange, Herbert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Complex Tori  |h [electronic resource] /  |c by Herbert Lange, Christina Birkenhake. 
250 |a 1st ed. 1999. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 1999. 
300 |a XV, 255 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 177 
490 1 |a Springer eBook Collection 
505 0 |a 1 Complex Tori -- 1 Homomorphisms of Complex Tori -- 2 Line Bundles -- 3 The Néron-Severi Group -- 4 The Dual Complex Torus -- 5 Extensions of Complex Tori -- 6 Complementary Subtori and Shafarevich Extensions -- 7 Simple and Indecomposable Complex Tori -- 8 The Endomorphism Algebra of a Complex Torus -- 9 The Theorem of Oort and Zarhin -- 10 The Space of all Complex Tori of Dimension g -- 2 Nondegenerate Complex Tori -- 1 Polarizations of Index k -- 2 Moduli Spaces of Nondegenerate Complex Tori -- 3 The Rosati Involution -- 4 The Dual Polarization -- 5 Poincaré’s Reducibility Theorem for Nongenerate Complex Tori -- 6 The Algebraic Dimension -- 7 Picard Number and Algebraic Dimension of Complex Tori of Dimension 2 -- 3 Embeddings into Projective Space -- 1 Kähler Theory of Line Bundles on Complex Tori -- 2 Harmonic Forms with Values in a Nondegenerate Line Bundle -- 3 Maps Associated to a Nondegenerate Line Bundle -- 4 The Family of Abelian Varieties Associated to a Nondegenerate Complex Torus -- 5 Some Properties of the Diffeomeorphism ?v_: X ? Xv_ -- 6 The Rational C?-map ?L,V_: X ? ?N -- 4 Intermediate Jacobians -- 1 Primitive Cohomology of Kähler Manifolds -- 2 The Griffiths Intermediate Jacobian -- 3 Some Properties of the Griffiths Intermediate Jacobian -- 4 The Weil Intermediate Jacobian -- 5 The Lazzeri Intermediate Jacobian -- 6 The Abelian Variety Associated to the Griffiths Intermediate Jacobian -- 5 Families of Complex Tori -- 1 Complex Tori with Endomorphism Structure -- 2 The Index of a Complex Torus with Endomorphism Structure -- 3 Complex Tori with Endomorphism Structure of Type Ia -- 4 Complex Tori with Endomorphism Structure of Type Ib -- 5 Complex Tori with Endomorphism Structure of Type II -- 6 The Parameter Spaces of Complex Tori with Endomorphism Structure -- 1 The Space Hg,k -- 2 The Space Km -- 3 The Space Lm,j -- 4 The Space Mm,k -- 5 The Space Nm,k -- 6 The Space Rm,j -- 7 The Space Sn -- 8 The Space Tn -- 9 The Space U(p,q),j -- 10 The Space Vp,q -- 7 Moduli Spaces -- 1 Moduli Problems -- 2 Homogeneous Spaces with Noncompact Stabilizer -- 3 The Moduli Space of all Complex Tori -- 4 Moduli Spaces of Nondegenerate Complex Tori -- 5 Moduli Spaces of Nondegenerate Complex Tori with Endomorphism Structure -- A The Kronecker Product -- B Anti-Involutions on R-Algebras -- C Complex Structures -- References -- Glossary of Notations. 
520 |a A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Functions of complex variables. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
690 |a Electronic resources (E-books) 
700 1 |a Birkenhake, Christina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 177 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-1566-0  |3 Click to view e-book  |t 0 
907 |a .b32204255  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21335904  |z 02-26-20 
999 f f |i 8ce68b1f-ece5-54d0-9cff-8c2056a9d59c  |s 99464b3f-ece1-5634-b07f-8bf629553666  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File