Feature Extraction, Construction and Selection A Data Mining Perspective / edited by Huan Liu, Hiroshi Motoda.

There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contrib...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Huan Liu (Editor), Motoda, Hiroshi (Editor)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1998.
Edition:1st ed. 1998.
Series:The Springer International Series in Engineering and Computer Science, 453
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3224793
003 MWH
005 20191026031304.0
007 cr nn 008mamaa
008 121227s1998 xxu| s |||| 0|eng d
020 |a 9781461557258 
024 7 |a 10.1007/978-1-4615-5725-8  |2 doi 
035 |a (DE-He213)978-1-4615-5725-8 
050 4 |a E-Book 
072 7 |a UMB  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
245 1 0 |a Feature Extraction, Construction and Selection  |h [electronic resource] :  |b A Data Mining Perspective /  |c edited by Huan Liu, Hiroshi Motoda. 
250 |a 1st ed. 1998. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 1998. 
300 |a XXIV, 410 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 453 
490 1 |a Springer eBook Collection 
505 0 |a 1 Less is More -- 2 Feature Weighting for Lazy Learning Algorithms -- 3 The Wrapper Approach -- 4 Data-driven Constructive Induction: Methodology and Applications -- 5 Selecting Features by Vertical Compactness of Data -- 6 Relevance Approach to Feature Subset Selection -- 7 Novel Methods for Feature Subset Selection with Respect to Problem Knowledge -- 8 Feature Subset Selection Using A Genetic Algorithm -- 9 A Relevancy Filter for Constructive Induction -- 10 Lexical Contextual Relations for the Unsupervised Discovery of Texts Features -- 11 Integrated Feature Extraction Using Adaptive Wavelets -- 12 Feature Extraction via Neural Networks -- 13 Using Lattice-based Framework as a Tool for Feature Extraction -- 14 Constructive Function Approximation -- 15 A Comparison of Constructing Different Types of New Feature for Decision Tree Learning -- 16 Constructive Induction: Covering Attribute Spectrum -- 17 Feature Construction Using Fragmentary Knowledge -- 18 Constructive Induction on Continuous Spaces -- 19 Evolutionary Feature Space Transformation -- 20 Feature Transformation by Function Decomposition -- 21 Constructive Induction of Cartesian Product Attributes -- 22 Towards Automatic Fractal Feature Extraction for Image Recognition -- 23 Feature Transformation Strategies for a Robot Learning Problem -- 24 Interactive Genetic Algorithm Based Feature Selection and Its Application to Marketing Data Analysis. 
520 |a There is broad interest in feature extraction, construction, and selection among practitioners from statistics, pattern recognition, and data mining to machine learning. Data preprocessing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from many leading and active researchers in this growing field and paints a picture of the state-of-art techniques that can boost the capabilities of many existing data mining tools. The objective of this collection is to increase the awareness of the data mining community about the research of feature extraction, construction and selection, which are currently conducted mainly in isolation. This book is part of our endeavor to produce a contemporary overview of modern solutions, to create synergy among these seemingly different branches, and to pave the way for developing meta-systems and novel approaches. Even with today's advanced computer technologies, discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Feature extraction, construction and selection are a set of techniques that transform and simplify data so as to make data mining tasks easier. Feature construction and selection can be viewed as two sides of the representation problem. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Data structures (Computer science). 
650 0 |a Statistics . 
650 0 |a Artificial intelligence. 
690 |a Electronic resources (E-books) 
700 1 |a Huan Liu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Motoda, Hiroshi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 453 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4615-5725-8  |3 Click to view e-book  |t 0 
907 |a .b3224793x  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21379580  |z 02-26-20 
999 f f |i 8a21e985-c631-568f-847e-aee292806de2  |s fd87b93c-a895-5eee-a6fd-acf11a1f8e79  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File