Matrix Groups An Introduction to Lie Group Theory / by Andrew Baker.

Aimed at advanced undergraduate and beginning graduate students, this book provides a first taste of the theory of Lie groups as an appetiser for a more substantial further course. Lie theoretic ideas lie at the heart of much of standard undergraduate linear algebra and exposure to them can inform o...

Full description

Saved in:
Bibliographic Details
Main Author: Baker, Andrew (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2002.
Edition:1st ed. 2002.
Series:Springer Undergraduate Mathematics Series,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3226175
003 MWH
005 20191027141539.0
007 cr nn 008mamaa
008 121227s2002 xxk| s |||| 0|eng d
020 |a 9781447101833 
024 7 |a 10.1007/978-1-4471-0183-3  |2 doi 
035 |a (DE-He213)978-1-4471-0183-3 
050 4 |a E-Book 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
100 1 |a Baker, Andrew.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Matrix Groups  |h [electronic resource] :  |b An Introduction to Lie Group Theory /  |c by Andrew Baker. 
250 |a 1st ed. 2002. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2002. 
300 |a XI, 330 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
490 1 |a Springer eBook Collection 
505 0 |a I. Basic Ideas and Examples -- 1. Real and Complex Matrix Groups -- 2. Exponentials, Differential Equations and One-parameter Subgroups -- 3. Tangent Spaces and Lie Algebras -- 4. Algebras, Quaternions and Quaternionic Symplectic Groups -- 5. Clifford Algebras and Spinor Groups -- 6. Lorentz Groups -- II. Matrix Groups as Lie Groups -- 7. Lie Groups -- 8. Homogeneous Spaces -- 9. Connectivity of Matrix Groups -- III. Compact Connected Lie Groups and their Classification -- 10. Maximal Tori in Compact Connected Lie Groups -- 11. Semi-simple Factorisation -- 12. Roots Systems, Weyl Groups and Dynkin Diagrams -- Hints and Solutions to Selected Exercises. 
520 |a Aimed at advanced undergraduate and beginning graduate students, this book provides a first taste of the theory of Lie groups as an appetiser for a more substantial further course. Lie theoretic ideas lie at the heart of much of standard undergraduate linear algebra and exposure to them can inform or motivate the study of the latter. The main focus is on matrix groups, i.e., closed subgroups of real and complex general linear groups. The first part studies examples and describes the classical families of simply connected compact groups. The second part introduces the idea of a lie group and studies the associated notion of a homogeneous space using orbits of smooth actions. Throughout, the emphasis is on providing an approach that is accessible to readers equipped with a standard undergraduate toolkit of algebra and analysis. Although the formal prerequisites are kept as low level as possible, the subject matter is sophisticated and contains many of the key themes of the fully developed theory, preparing students for a more standard and abstract course in Lie theory and differential geometry. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Differential geometry. 
650 0 |a Mathematical physics. 
650 0 |a Group theory. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4471-0183-3  |3 Click to view e-book  |t 0 
907 |a .b32261755  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxk  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21393400  |z 02-26-20 
999 f f |i 0b7f306c-886b-52af-ade3-5bc45a3cc411  |s 504e8d18-2b37-5c93-9342-df09fcaf4f40  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File