Analysis on Lie Groups with Polynomial Growth by Nick Dungey, A.F.M. (Tom) ter Elst, Derek William Robinson.

Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic op...

Full description

Saved in:
Bibliographic Details
Main Authors: Dungey, Nick (Author), ter Elst, A.F.M. (Tom) (Author), Robinson, Derek William (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2003.
Edition:1st ed. 2003.
Series:Progress in Mathematics, 214
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3228615
003 MWH
005 20191029042140.0
007 cr nn 008mamaa
008 121227s2003 xxu| s |||| 0|eng d
020 |a 9781461220626 
024 7 |a 10.1007/978-1-4612-2062-6  |2 doi 
035 |a (DE-He213)978-1-4612-2062-6 
050 4 |a E-Book 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
100 1 |a Dungey, Nick.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis on Lie Groups with Polynomial Growth  |h [electronic resource] /  |c by Nick Dungey, A.F.M. (Tom) ter Elst, Derek William Robinson. 
250 |a 1st ed. 2003. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2003. 
300 |a VIII, 312 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 214 
490 1 |a Springer eBook Collection 
505 0 |a I Introduction -- II General Formalism -- II.1 Lie groups and Lie algebras -- II.2 Subelliptic operators -- II.3 Subelliptic kernels -- II.4 Growth properties -- II.5 Real operators -- II.6 Local bounds on kernels -- II.7 Compact groups -- II.8 Transference method -- II.9 Nilpotent groups -- II.10 De Giorgi estimates -- II.11 Almost periodic functions -- II.12 Interpolation -- Notes and Remarks -- III Structure Theory -- III.1 Complementary subspaces -- III.2 The nilshadow; algebraic structure -- III.3 Uniqueness of the nilshadow -- III.4 Near-nilpotent ideals -- III.5 Stratified nilshadow -- III.6 Twisted products -- III.7 The nilshadow; analytic structure -- Notes and Remarks -- IV Homogenization and Kernel Bounds -- IV.1 Subelliptic operators -- IV.2 Scaling -- IV.3 Homogenization; correctors -- IV.4 Homogenized operators -- IV.5 Homogenization; convergence -- IV.6 Kernel bounds; stratified nilshadow -- IV.7 Kernel bounds; general case -- Notes and Remarks -- V Global Derivatives -- V.1 L2-bounds -- V.2 Gaussian bounds -- V.3 Anomalous behaviour -- Notes and Remarks -- VI Asymptotics -- VI. 1 Asymptotics of semigroups -- VI.2 Asymptotics of derivatives -- Notes and Remarks -- Appendices -- A.1 De Giorgi estimates -- A.2 Morrey and Campanato spaces -- A.3 Proof of Theorem II.10.5 -- A.4 Rellich lemma -- Notes and Remarks -- References -- Index of Notation. 
520 |a Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one. This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Operator theory. 
690 |a Electronic resources (E-books) 
700 1 |a ter Elst, A.F.M. (Tom).  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Robinson, Derek William.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 214 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-2062-6  |3 Click to view e-book  |t 0 
907 |a .b32286156  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21417805  |z 02-26-20 
999 f f |i 209b3a18-09f0-573c-bd8d-6698e9f5bfe1  |s 98460c15-7dbe-582e-93dc-256d9c6c300b  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File