Advanced Practical Process Control by Brian Roffel, Ben Betlem.

This text and reference offers an application-oriented approach to process control. It systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem.  Theory is discussed as far as it is needed to understand and solve th...

Full description

Saved in:
Bibliographic Details
Main Authors: Roffel, Brian (Author), Betlem, Ben (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Edition:1st ed. 2004.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3230478
003 MWH
005 20191029052444.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783642182587 
024 7 |a 10.1007/978-3-642-18258-7  |2 doi 
035 |a (DE-He213)978-3-642-18258-7 
050 4 |a E-Book 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
072 7 |a TJK  |2 thema 
100 1 |a Roffel, Brian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced Practical Process Control  |h [electronic resource] /  |c by Brian Roffel, Ben Betlem. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a IX, 309 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a 1 Introduction to Advanced Process Control Concepts -- 1.1 Process Time Constant -- 1.2 Domain Transformations -- 1.3 Laplace Transformation -- 1.4 Discrete Approximations -- 1.5 z-Transforms -- 1.6 Advanced and Modified z-Transforms -- 1.7 Common Elements in Control -- 1.8 The Smith Predictor -- 1.9 Feed-forward Control -- 1.10 Feed-forward Control in a Smith Predictor -- 1.11 Dahlin’s Control Algorithm -- References -- 2 Process Simulation -- 2.1 Simulation using Matlab Simulink -- 2.2 Simulation of Feed-forward Control -- 2.3 Control Simulation of a 2x2 System -- 2.4 Simulation of Dahlin’s Control Algorithm -- 3 Process Modeling and Identification -- 3.1 Model Applications -- 3.2 Types of Models -- 3.3 Empirical (linear) Dynamic Models -- 3.4 Model Structure Considerations -- 3.5 Model Identification -- References -- 4 Identification Examples -- 4.1 SISO Furnace Parametric Model Identification -- 4.2 MISO Parametric Model Identification -- 4.3 MISO Non-parametric Identification of a Non-integrating Process -- 4.4 MIMO Identification of an Integrating and Non-integrating Process -- 4.5 Design of Plant Experiments -- 4.5.1 Nature of Input Sequence -- 4.5.2 PRBS Type Input -- 4.5.3 Step Type Input -- 4.5.4 Type of Experiment -- 4.6 Data File Layout -- 4.7 Conversion of Model Structures -- 4.8 Example and Comparison of Open and Closed Loop Identification -- References -- 5 Linear Multivariable Control -- 5.1 Interaction in Multivariable Systems -- 5.2 Dynamic Matrix Control -- 5.3 Properties of Commercial MPC Packages -- References -- 6 Multivariable Optimal Constraint Control Algorithm -- 6.1 General Overview -- 6.2 Model Formulation for Systems with Dead Time -- 6.3 Model Formulation for Multivariable Processes -- 6.4 Model Formulation for Multivariable Processes with Time Delays -- 6.5 Model Formulation in Case of a Limited Control Horizon -- 6.6 Mocca Control Formulation -- 6.7 Non-linear Transformations -- 6.8 Practical Implementation Guidelines -- 6.9 Case Study -- 6.10 Control of a Fluidized Catalytic Cracker -- 6.11 Examples of Case Studies in MATLAB -- 6.12 Control of Integrating Processes -- 6.13 Lab Exercises -- 6.14 Use of MCPC for Constrained Multivariable Control -- References -- 7 Internal Model Control -- 7.1 Introduction -- 7.2 Factorization of Multiple Delays -- 7.3 Filter Design -- 7.4 Feed-forward IMC -- 7.5 Example of Controller Design -- 7.6 LQ Optimal Inverse Design -- References -- 8 Nonlinear Multivariable Control -- 8.1 Non-linear Model Predictive Control -- 8.2 Non-linear Quadratic DMC -- 8.3 Generic Model Control -- 8.4 Problem Description -- 8.5 GMC Application to the CSTR System -- 8.6 Discussion of the GMC Algorithm -- 8.7 Simulation of Reactor Control -- 8.8 One Step Reference Trajectory Control -- 8.9 Predictive Horizon Reference Trajectory Control -- References -- 9 Optimization of Process Operation -- 9.1 Introduction to Real-time Optimization -- 9.2 Model Building -- 9.3 The Objective Function -- 9.4 Unconstrained Functions: one Dimensional Problems -- 9.5 Unconstrained Multivariable Optimization -- 9.6 Linear Programming -- 9.7 Non-linear Programming -- References -- 10 Optimization Examples -- 10.1 AMPL: a Multi-purpose Optimizer -- 10.2 Optimization Examples -- References -- 11 Integration of Control and Optimization -- 11.1 Introduction -- 11.2 Description of the Desalination Plant -- 11.3 Production Maximization of Desalination Plant -- 11.4 Linear Model Predictive Control of Desalination Plant -- 11.5 Reactor problem definition -- 11.6 Multivariable Non-linear Control of the Reactor -- References -- Appendix I. MCPC software guide -- I.1 Installation -- I.2 Model identification -- I.2.1 General process information -- I.2.2 Identification data -- I.2.3 Output details -- I.3 Controller design -- I.4 Control simulation -- I.5 Dealing with constraints -- I.6 Saving a project -- Appendix II. Comparison of control strategies for a hollow shaft reactor -- II.1 Introduction -- II.2 Model Equations -- II.3 Proportional Integral Control -- II.4 Linear Multivariable Control -- II.5 Non-linear Multivariable Control -- References. 
520 |a This text and reference offers an application-oriented approach to process control. It systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem.  Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Electrical engineering. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Chemical engineering. 
650 0 |a Computational intelligence. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
690 |a Electronic resources (E-books) 
700 1 |a Betlem, Ben.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-642-18258-7  |3 Click to view e-book  |t 0 
907 |a .b3230478x  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21436435  |z 02-26-20 
999 f f |i b0a494b8-cf50-5b63-831a-dbe1eacb3a25  |s 0302fe01-b60b-5068-b163-d8f1afc6376c  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File