Thermodynamics of Energy Conversion and Transport edited by Stanislaw Sieniutycz, Alexis De Vos.

It is becoming more and more important to manage energy resources effectively: to maximize their benefits while minimizing the negative environmental impacts. Scientist and engineers are thus faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and th...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Sieniutycz, Stanislaw (Editor), Vos, Alexis De (Editor)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2000.
Edition:1st ed. 2000.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Description
Summary:It is becoming more and more important to manage energy resources effectively: to maximize their benefits while minimizing the negative environmental impacts. Scientist and engineers are thus faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and thermodynamics. It is chiefly to the last that the present volume is addressed. Nonequilibrium thermodynamic approaches, such as finite-time thermodynamics and Second-Law analyses, can provide realistic models and analyses that can be used to search for optimum ways to operate machines and processes. Intended for physicists, chemists, and engineers, this volume reviews the state of the art in the thermodynamics of energy conversion and transmission. Using examples from solar, thermal, mechanical, chemical, and environmental engineering, the book focuses on the use of thermodynamic criteria for optimizing energy conversion and transmission. The first set of chapters focuses on solar energy conversion; the second set discusses the transfer and conversion of chemical energy (as in internal combustion engines or distillation columns); a concluding set of chapters deals with geometric methods in thermodynamics.
Physical Description:XXII, 335 p. online resource.
ISBN:9781461212867
DOI:10.1007/978-1-4612-1286-7