Implicit Partial Differential Equations by Bernard Dacorogna, Paolo Marcellini.

Nonlinear partial differential equations has become one of the main tools of mod­ ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of function...

Full description

Saved in:
Bibliographic Details
Main Authors: Dacorogna, Bernard. (Author, http://id.loc.gov/vocabulary/relators/aut), Marcellini, Paolo. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1999.
Edition:1st ed. 1999.
Series:Progress in Nonlinear Differential Equations and Their Applications, 37
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
LEADER 04520nam a22005895i 4500
001 b3230922
003 MWH
005 20191027111525.0
007 cr nn 008mamaa
008 121227s1999 xxu| s |||| 0|eng d
020 |a 9781461215622 
024 7 |a 10.1007/978-1-4612-1562-2  |2 doi 
035 |a (DE-He213)978-1-4612-1562-2 
050 4 |a E-Book 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
100 1 |a Dacorogna, Bernard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Implicit Partial Differential Equations  |h [electronic resource] /  |c by Bernard Dacorogna, Paolo Marcellini. 
250 |a 1st ed. 1999. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 1999. 
300 |a XIII, 273 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 37 
490 1 |a Springer eBook Collection 
505 0 |a 1 Introduction -- 1.1 The first order case -- 1.2 Second and higher order cases -- 1.3 Different methods -- 1.4 Applications to the calculus of variations -- 1.5 Some unsolved problems -- I First Order Equations -- 2 First and Second Order PDE’s -- 3 Second Order Equations -- 4 Comparison with Viscosity Solutions -- II Systems of Partial Differential Equations -- 5 Some Preliminary Results -- 6 Existence Theorems for Systems -- III Applications -- 7 The Singular Values Case -- 8 The Case of Potential Wells -- 9 The Complex Eikonal Equation -- IV Appendix -- 10 Appendix: Piecewise Approximations -- References. 
520 |a Nonlinear partial differential equations has become one of the main tools of mod­ ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations", described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin­ ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
690 |a Electronic resources (E-books) 
700 1 |a Marcellini, Paolo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications,  |x 1421-1750 ;  |v 37 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-1562-2  |3 Click to view e-book 
907 |a .b32309223  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21440876  |z 02-26-20 
999 f f |i c866147d-61a2-5afd-88b8-798f9fabd8de  |s 7a5377ce-c12b-5cb5-b9ad-53c5b189aba0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d E-resources  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1