Representation Theory A First Course / by William Fulton, Joe Harris.

The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see th...

Full description

Saved in:
Bibliographic Details
Main Authors: Fulton, William (Author), Harris, Joe (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2004.
Edition:1st ed. 2004.
Series:Readings in Mathematics ; 129
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3232018
003 MWH
005 20191027201812.0
007 cr nn 008mamaa
008 110825s2004 xxu| s |||| 0|eng d
020 |a 9781461209799 
024 7 |a 10.1007/978-1-4612-0979-9  |2 doi 
035 |a (DE-He213)978-1-4612-0979-9 
050 4 |a E-Book 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
100 1 |a Fulton, William.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Representation Theory  |h [electronic resource] :  |b A First Course /  |c by William Fulton, Joe Harris. 
250 |a 1st ed. 2004. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2004. 
300 |a XV, 551 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Readings in Mathematics ;  |v 129 
490 1 |a Springer eBook Collection 
505 0 |a I: Finite Groups -- 1. Representations of Finite Groups -- 2. Characters -- 3. Examples; Induced Representations; Group Algebras; Real Representations -- 4. Representations of: $$ { mathfrak{S}_d}$$ Young Diagrams and Frobenius’s Character Formula -- 5. Representations of $$ { mathfrak{A}_d}$$ and $$ G{L_2} left( {{ mathbb{F}_q}} right)$$ -- 6. Weyl’s Construction -- II: Lie Groups and Lie Algebras -- 7. Lie Groups -- 8. Lie Algebras and Lie Groups -- 9. Initial Classification of Lie Algebras -- 10. Lie Algebras in Dimensions One, Two, and Three -- 11. Representations of $$ mathfrak{s}{ mathfrak{l}_2} mathbb{C}$$ -- 12. Representations of $$ mathfrak{s}{ mathfrak{l}_3} mathbb{C},$$ Part I -- 13. Representations of $$ mathfrak{s}{ mathfrak{l}_3} mathbb{C},$$ Part II: Mainly Lots of Examples -- III: The Classical Lie Algebras and Their Representations -- 14. The General Set-up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra -- 15. $$ mathfrak{s}{ mathfrak{l}_4} mathbb{C}$$ and $$ mathfrak{s}{ mathfrak{l}_n} mathbb{C}$$ -- 16. Symplectic Lie Algebras -- 17. $$ mathfrak{s}{ mathfrak{p}_6} mathbb{C}$$ and $$ mathfrak{s}{ mathfrak{p}_2n} mathbb{C}$$ -- 18. Orthogonal Lie Algebras -- 19. $$ mathfrak{s}{ mathfrak{o}_6} mathbb{C},$$$$ mathfrak{s}{ mathfrak{o}_7} mathbb{C},$$ and $$ mathfrak{s}{ mathfrak{o}_m} mathbb{C}$$ -- 20. Spin Representations of $$ mathfrak{s}{ mathfrak{o}_m} mathbb{C}$$ -- IV: Lie Theory -- 21. The Classification of Complex Simple Lie Algebras -- 22. $$ {g_2}$$and Other Exceptional Lie Algebras -- 23. Complex Lie Groups; Characters -- 24. Weyl Character Formula -- 25. More Character Formulas -- 26. Real Lie Algebras and Lie Groups -- Appendices -- A. On Symmetric Functions -- §A.1: Basic Symmetric Polynomials and Relations among Them -- §A.2: Proofs of the Determinantal Identities -- §A.3: Other Determinantal Identities -- B. On Multilinear Algebra -- §B.1: Tensor Products -- §B.2: Exterior and Symmetric Powers -- §B.3: Duals and Contractions -- C. On Semisimplicity -- §C.1: The Killing Form and Caftan’s Criterion -- §C.2: Complete Reducibility and the Jordan Decomposition -- §C.3: On Derivations -- D. Cartan Subalgebras -- §D.1: The Existence of Cartan Subalgebras -- §D.2: On the Structure of Semisimple Lie Algebras -- §D.3: The Conjugacy of Cartan Subalgebras -- §D.4: On the Weyl Group -- E. Ado’s and Levi’s Theorems -- §E.1: Levi’s Theorem -- §E.2: Ado’s Theorem -- F. Invariant Theory for the Classical Groups -- §F.1: The Polynomial Invariants -- §F.2: Applications to Symplectic and Orthogonal Groups -- §F.3: Proof of Capelli’s Identity -- Hints, Answers, and References -- Index of Symbols. 
520 |a The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
690 |a Electronic resources (E-books) 
700 1 |a Harris, Joe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Readings in Mathematics ;  |v 129 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-0979-9  |3 Click to view e-book  |t 0 
907 |a .b32320188  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21451837  |z 02-26-20 
999 f f |i 8a148398-ae3c-5c15-8d7a-63acdee34155  |s 836e10e0-7e27-537e-a526-1a8fdd27565f  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File