Mathematical Analysis Functions of One Variable / by Mariano Giaquinta, Giuseppe Modica.

For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics...

Full description

Saved in:
Bibliographic Details
Main Authors: Giaquinta, Mariano (Author), Modica, Giuseppe (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2003.
Edition:1st ed. 2003.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3233644
003 MWH
005 20191027193219.0
007 cr nn 008mamaa
008 121227s2003 xxu| s |||| 0|eng d
020 |a 9781461200079 
024 7 |a 10.1007/978-1-4612-0007-9  |2 doi 
035 |a (DE-He213)978-1-4612-0007-9 
050 4 |a E-Book 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
100 1 |a Giaquinta, Mariano.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Analysis  |h [electronic resource] :  |b Functions of One Variable /  |c by Mariano Giaquinta, Giuseppe Modica. 
250 |a 1st ed. 2003. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2003. 
300 |a XIII, 353 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a 1. Numbers, Functions and their Graphs -- 1.1 Real Numbers: a Description -- 1.2 The Cartesian Plane -- 1.3 Elementary Functions -- 1.4 Remarks on Common Language and the Language of Mathematics -- 1.5 Exercises -- 2. Limits and Continuity -- 2.1 Limits -- 2.2. Continuous Functions -- 2.3. Continuous functions on an interval -- 2.4 Weierstrass’s Theorem -- 2.5 Summing Up -- 2.6 Exercises -- 3. The Fundamental Ideas of the Differential and Integral Calculus -- 3.1 Differential Calculus -- 3.2 Integral Calculus -- 3.3 The Fundamental Theorem of Calculus -- 3.4 Calculus: Some Historical Remarks -- 3.5 Summing Up -- 3.6 Exercises -- 4. The Calculus of Derivatives and of Integrals -- 4.1 Computation of Derivatives -- 4.2 Integrals and Primitives -- 4.3 A Definition of the Trigonometric, Logarithmic and Exponential Functions -- 4.4 Some Differential Equations -- 4.5 Generalized Integrals -- 4.6 Summing Up -- 4.7 Exercises -- 5. Further Developments in Calculus -- 5.1 Taylor’s Formula -- 5.2 The Calculus of Limits -- 5.3 Convex Functions -- 5.4 Some Inequalities -- 5.5 Graphing a Function -- 5.6 Summing Up -- 5.7 Exercises -- 6. Toward Differential Equations and Minimum Principles -- 6.1 Linear Ordinary Differential Equations -- 6.2 First Order ODEs -- 6.3 One-Dimensional Motions -- 6.4 Optimization Problems -- 6.5 Summing Up -- 6.6 Exercises -- A. Matematicians and Other Scientists -- B. Bibliographical Notes -- C. Index. 
520 |a For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen­ erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen­ dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis­ tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
690 |a Electronic resources (E-books) 
700 1 |a Modica, Giuseppe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4612-0007-9  |3 Click to view e-book  |t 0 
907 |a .b32336445  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21468096  |z 02-26-20 
999 f f |i cfeb9d5d-4013-5a64-9bba-d08d7c111d5c  |s c021b4d9-41e6-53d9-879e-10e3b585123d  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File