Spin Labeling Theory and Applications / edited by Lawrence J. Berliner, Jacques Reuben.

We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Berliner, Lawrence J. (Editor), Reuben, Jacques (Editor)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1989.
Edition:1st ed. 1989.
Series:Biological Magnetic Resonance, 8
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • 1 Calculating Slow Motional Magnetic Resonance Spectra: A User’s Guide
  • 1. Introduction
  • 2. General Theoretical Considerations
  • 2.1. Terms Included in the Liouville and Diffusion Superoperators
  • 2.2. Definitions of Coordinate Systems
  • 2.3. Basis Vectors and Scalar Product in Operator Space
  • 2.4. Construction of the Spin Hamiltonian
  • 2.5. Matrix Elements of the Liouville Superoperator
  • 2.6. Construction and Matrix Elements of the Diffusion Super-operator
  • 2.7. Components of the Starting Vector
  • 2.8. The High-Field Approximation
  • 3. Magnetic Resonance Line Shapes and the Complex Symmetric Lanczos Algorithm
  • 3.1. The Real Symmetric Lanczos Algorithm
  • 3.2. The Complex Symmetric Lanczos Algorithm
  • 3.3. The Real Symmetric Conjugate Gradients Algorithm
  • 3.4. The Complex Symmetric Conjugate Gradients Algorithm
  • 3.5. The Continued-Fraction Representation of the Spectral Function
  • 3.6. Convergence of the Sequence of Approximate Spectral Functions
  • 4. Computational Considerations
  • 4.1. Naming Conventions for Files
  • 4.2. Array Dimensions and Common Blocks
  • 4.3. The Parameter Input Program: LBLL
  • 4.4. Spectral Calculations: EPRLL and EPRCGL
  • 4.5. Calculation of the Spectral Function: TDLL
  • 4.6. “Field Sweep” Conjugate-Gradients Calculations: EPRBL and TNLL
  • 4.7. Auxiliary Programs: D200, STVT, MATLST, and VECLST
  • 4.8. Porting Programs to Other Machines
  • 5. Example Calculations
  • 5.1. Model Calculations and General Strategy
  • 5.2. Examples from the Literature
  • Appendix: Parameters for Example Calculations
  • References
  • 2 Inhomogeneously Broadened Spin-Label Spectra
  • 1. Introduction
  • 2. Experimental Determination of Hyperfine Coupling Constants
  • 2.1. NMR and ENDOR
  • 2.2. ESR Simulation
  • 2.3. Solvent Dependence of Hyperfine Coupling Constants
  • 3. Gaussian Contributions to Spin-Label Line Shapes
  • Example 1
  • 4. The Voight Approximation and a One-Parameter Description of Line Shapes
  • Example 2
  • 5. Line-Shape Comparisons
  • 5.1. Unresolved Hyperfine Multiplets
  • 5.2. A Universal Nitroxide
  • 5.3. Gaussian-Lorentzian Sum Approximations
  • 6. Correcting the Linewidth of an Inhomogeneously Broadened Line
  • 6.1. Known Hyperfine Coupling Constants
  • Example 3. Solvent Dependence of ?HppG
  • Example 4. Dependence of ?HppGon Spin-Label Alignment in an Ordered Fluid
  • 6.2. Unknown Hyperfine Coupling Constants
  • Example 5
  • 6.3. Additional Broadening Method
  • 7. The Relationship of Linewidth Ratios to Measured Line-Height Ratios
  • 7.1. Rotational Correlation Times
  • Example 6
  • 7.2. Linewidth Ratios Over a Broader Range
  • Example 7. Measuring Oxygen Concentrations Using Unresolved Spin-Label Spectra
  • 8. Accurate Estimate of Relative Doubly-Integrated Spectral Intensities
  • Example 8. A Hypothetical Spin-Label Partitioning Experiment
  • 9. Determining Spin-Exchange Frequencies of Spin Labels in Liquids of Low Viscosity
  • 10. Deuterated Spin Labels
  • 10.1. Gaussian Linewidth of Deuterated Spin Labels
  • 10.2. Proton Contamination of a Deuterated Spin Label
  • Example 9
  • Example 10
  • 11. Conclusions
  • References
  • 3 Saturation Transfer Spectroscopy of Spin Labels: Techniques and Interpretation of Spectra
  • 1. Introduction
  • 2. Basic Principles of Saturation Transfer ESR
  • 2.1. The Spin Hamiltonian
  • 2.2. ESR Spectra of Immobilized Spin Labels
  • 2.3. The Bloch Equations
  • 2.4. Qualitative Explanation of ST-ESR
  • 2.5. Spectral Displays of ST-ESR
  • 2.6. Analysis of ST-ESR Spectra
  • 3. Measurements of Saturation Transfer ESR Spectra
  • 3.1. The Resonant Cavity
  • 3.2. Effect of Sample on Cavity Properties
  • 3.3. Phase-Sensitive Detection
  • 3.4. Calibration Procedures
  • 3.5. Standard Conditions for ST-ESR Spectroscopy
  • 4. Analysis of Saturation Transfer ESR Spectra
  • 4.1. Isotropic Motion
  • 4.2. Anisotropic Motion
  • 5. Future Developments
  • References
  • 4 Nitrogen-15 and Deuterium Substituted Spin Labels for Studies of Very Slow Rotational Motion
  • 1. Introduction
  • 2. Overview of Rotational Diffusion Models
  • 2.1. Definition of Rotational Correlation Times
  • 2.2. Isotropic Rotational Diffusion
  • 2.3. Anisotropic Rotational Diffusion in an Isotropic Medium
  • 2.4. Uniaxial Rotational Diffusion in an Anisotropic Medium
  • 3. Sensitivity of cw-ST-EPR Signals to Rotational Motion
  • 3.1. Choice of Signal
  • 3.2. Sensitivity to Motion
  • 3.3. The Case of Isotropic Motion and Anisotropic Magnetic Tensors
  • 3.4. Effects of Anisotropic Motion and Anisotropic Tensors
  • 3.5. Geometric Considerations for Analyzing Anisotropic Motion
  • 4. Analysis of cw-ST-EPR Data
  • 4.1. Isotropic Model Systems
  • 4.2. Anisotropic Model Systems
  • 4.3. Anisotropic Motional Modeling by Computer Simulations
  • 4.4. Overview of Theory for Computation of ST-EPR Spectra
  • 5. Studies of Isotropic Motion with Nitrogen-15 Spin Labels
  • 5.1. V1EPR Signals as a Function of ?r
  • 5.2. Dependence of the V?2Signal on ?r
  • 6. Effects of Anisotropic Rotational Diffusion on V?2Spectra
  • 6.1. Sensitivity of V?2to Uniaxial Rotation
  • 6.2. Effects of Labeling Geometry
  • 6.3. Sensitivity of V’2to Anisotropic Rotational Diffusion of Axially Symmetric Ellipsoids in an Isotropic Medium
  • 6.4. Relationship between Effective Correlation Times and Anisotropic Motion
  • 7. Optimization of Sensitivity of V’2to Motion
  • 7.1. Altering Sensitivity to Motion by Selection of v0
  • 7.2. Altering Sensitivity to Motion by Selection of vm
  • 8. Analysis of Overlapping Motional Species
  • 8.1. One Fast and One Slow Motional Component
  • 8.2. Two or More Slow Motional Components
  • 9. Computer Modeling of Nitrogen-14 V’2Signals
  • 9.1. Isotropic Motion Simulations
  • 9.2. Anisotropic Motion Simulations
  • 9.3. Signal-to-Noise Ratio and Motional Sensitivity of Nitrogen-15 versus Nitrogen-14 Spin Labels
  • 10. Saturation Recovery EPR Studies with Nitrogen-15 Spin Labels
  • 10.1. Overview of the Experiment
  • 10.2. Spectrometer Variables
  • 10.3. Strategies for Extraction of Motional Information
  • 10.4. Theory of Saturation Recovery
  • 10.5. Pseudosecular Terms
  • 10.6. Isotropic Brownian Motion—Secular Terms Only
  • 10.7. Results of Calculations of SR Curves for Isotropic Motion
  • 10.8. Results of Calculations of SR Curves for Nonaxial Tensors
  • 10.9. Effects of Pseudosecular Terms
  • 10.10. Pseudosecular Terms using Nitrogen-14
  • 10.11. Population Analysis: An Estimate of Amplitudes
  • 11. Conclusions
  • References
  • 5 Experimental Methods in Spin-Label Spectral Analysis
  • 1. Introduction
  • 2. Inhomogeneous Broadening
  • 3. Fast Rotational Motion
  • 4. Slow Rotational Motion
  • 5. Anisotropic Rotation: Lipids/Membranes
  • 6. Spin-Spin Interactions and Lateral Diffusion
  • 6.1. Spin-Spin Exchange
  • 6.2. Translational Diffusion and Bimolecular Collision Rate
  • 6.3. Dipolar Spin-Spin Broadening
  • 6.4. Separation of Exchange and Dipole-Dipole Interactions
  • 7. Lipid-Protein Interactions
  • 7.1. Spectral Subtraction/Addition
  • 7.2. Measurements at 35 GHz
  • 7.3. Analysis of Lipid-Protein Association
  • 7.4. Two-Site Exchange Simulations
  • 8. Saturation Transfer ESR
  • 8.1. Power and Modulation Calibration and the Effects of Sample Shape, Size, and Dielectric Absorption
  • 8.2. Anisotropic Rotation
  • 8.3. Integral Method: Multicomponent Spectra
  • 8.4. Dispersion Spectra: Difference Spectroscopy
  • References
  • 6 Electron-Electron Double Resonance
  • 1. Introduction
  • 1.1. Definitions and Background
  • 1.2. Historical Overview
  • 2. Rate Equations
  • 3. Spin-Label Relaximetry
  • 4. Apparatus
  • 5. Applications
  • 5.1. Lateral Diffusion in Membranes
  • 5.2. Studies Utilizing 14N: 15N Spin-Label Pairs
  • 5.3. ELDOR in Cells
  • 5.4. Comparison with Spin-Exchange Line Broadening
  • 5.5. Further Application of 14N: 15N Methodology
  • 6. Future Opportunities
  • References
  • 7 Resolved Electron-Electron Spin-Spin Splittings in EPR Spectra
  • 1. The Scope of Electron Spin-Spin Interactions
  • 2. The Nature of Electron Spin-Spin Interactions
  • 2.1. Dipolar Interaction
  • 2.2. Exchange Interaction
  • 2.3. Hamiltonian for Spin-Spin Interaction
  • 2.4. Computational Approaches
  • 3. Analogies between Nuclear-Nuclear, Electron-Nuclear, and Electron-Electron Spin-Spin Interactions and Long-Range Electron Transfer
  • 4. Spin-1/2-Spin-1/2 Interaction
  • 4.1. Spin-Spin Splitting
  • 4.2. Half-Field Transitions
  • 4.3. Geometrical Information
  • 5. Spin 1-Spin 1/2
  • 6. Spin 3/2-Spin 1/2
  • 7. Spin 5/2-Spin 1/2
  • 7.1. Mn(II) Interacting with S= 1/2
  • 7.2. High-Spin Fe(III) Interacting with S= 1/2
  • 8. Spin 7/2-Spin 1/2
  • 9. Chemical Properties Revealed via Spin-Spin Interactions
  • 9.1. Kinetics of Ligand Exchange for Cu(II) i.
  • 9.2. Coordination Equilibria
  • 9.3. Weak Orbital Overlaps
  • 10. Spin-Spin Interactions in Biological Systems
  • 10.1. Cobalt(II) - Radical Interaction
  • 10.2. Mo(V) Interaction with Fe/S Cluster
  • 10.3. Iron-Nitroxyl Interaction
  • 10.4. Nitroxyl-Nitroxyl Interaction
  • 11. Exchange Interaction through Multiatom Linkages
  • 12. Quantitative EPR Measurements
  • 13. Summary and Prognosis
  • References
  • 8 Spin-Label Oximetry
  • 1. Introduction
  • 2. Physics
  • 2.1. Bimolecular Collisions
  • 2.2. Magnetic Interactions
  • 2.3. The Absolute T1Method
  • 2.4. The Absolute T2Method
  • 3. Experimental Methods
  • 3.1. TPX Gas-Exchange Sample Cell
  • 3.2. T1Sensitive Methods
  • 3.3. T2(Linewidth-Sensitive) Methods
  • 4. Applications
  • 5. Future Opportunities
  • References
  • 9 Chemistry of Spin-Labeled Amino Acids and Peptides: Some New Mono- and Bifunctionalized Nitroxide Free Radicals
  • 1. Introduction
  • 2. Spin Labeling of Amino Acids and Peptides
  • 2.1. Reagents for Labeling at the Amino Terminal
  • 2.2. C-Terminal Spin-Labeled Amino Acids and Peptides
  • 2.3. Amino Acids and Peptides Labeled in the Side Chain
  • 3. Nitroxide Amino Acids
  • 3.1. Imidazolinyl Nitroxide Amino Acids
  • 3.2. Pyrrolidine Nitroxide Amino Acids
  • 3.3.