Effective Polynomial Computation by Richard Zippel.

Saved in:
Bibliographic Details
Main Author: Zippel, Richard (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1993.
Edition:1st ed. 1993.
Series:The Springer International Series in Engineering and Computer Science, 241
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3234605
003 MWH
005 20191024203005.0
007 cr nn 008mamaa
008 121227s1993 xxu| s |||| 0|eng d
020 |a 9781461531883 
024 7 |a 10.1007/978-1-4615-3188-3  |2 doi 
035 |a (DE-He213)978-1-4615-3188-3 
050 4 |a E-Book 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
100 1 |a Zippel, Richard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Effective Polynomial Computation  |h [electronic resource] /  |c by Richard Zippel. 
250 |a 1st ed. 1993. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 1993. 
300 |a XI, 363 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 241 
490 1 |a Springer eBook Collection 
505 0 |a 1 Euclid’s Algorithm -- 1.1 Euclidean Algorithm -- 1.2 Diophantine Approximations -- 1.3 Continued Fractions -- 1.4 Diophantine Equations -- 2 Continued Fractions -- 2.1 Basics -- 2.2 Matrix Representation -- 2.3 Continuant Representation -- 2.4 Continued Fractions of Quadratics -- 2.5 Approximation Properties -- 2.6 Continued Fraction Arithmetic -- 3 Diophantine Equations -- 3.1 Two Variable Linear Diophantine Equations -- 3.2 General Linear Diophantine Equations -- 3.3 Pell’s Equation -- 3.4 Fermat’s Last Theorem -- 4 Lattice Techniques -- 4.1 Lattice Fundamentals -- 4.2 Minkowski Convex Body Theorem -- 4.3 Reduced Bases -- 4.4 Finding Numerical Relationships -- 5 Arithmetic Functions -- 5.1 Arithmetic Functions -- 5.2 Asymptotic Behavior of Arithmetic Functions -- 5.3 Distribution of Primes -- 5.4 Bertrand’s Postulate -- 6 Residue Rings -- 6.1 Basic Properties of ?/m? -- 6.2 Chinese Remainder Theorem -- 6.3 Multiplicative Structure of ?/m? -- 6.4 Quadratic Reciprocity -- 6.5 Algebraic Extensions of -- 6.6 p-adic Numbers -- 6.7 Cryptosystems -- 6.8 Sums of Squares -- 7 Polynomial Arithmetic -- 7.1 Generalities -- 7.2 Polynomial Addition -- 7.3 Polynomial Multiplication -- 7.4 Fast Polynomial Algorithms -- 7.5 Polynomial Exponentiation -- 7.6 Polynomial Substitution -- 8 Polynomial GCD’s: Classical Algorithms -- 8.1 Generalities -- 8.2 GCD of Several Quantities -- 8.3 Polynomial Contents -- 8.4 Coefficient Growth -- 8.5 Pseudo-Quotients -- 8.6 Subresultant Polynomial Remainder Sequence -- 9 Polynomial Elimination -- 9.1 Symmetric Functions -- 9.2 Polynomial Resultants -- 9.3 Subresultants -- 9.4 Elimination Examples -- 10 Formal Power Series -- 10.1 Introduction -- 10.2 Power Series Arithmetic -- 10.3 Power Series Exponentiation -- 10.4 Composition of Formal Power Series -- 10.5 Reversion of Power Series -- 11 Bounds on Polynomials -- 11.1 Heights of Polynomials -- 11.2 Uniform Coefficient Bounds -- 11.3 Weighted Coefficient Bounds -- 11.4 Size of a Polynomial’s Zeroes -- 11.5 Discriminants and Zero Separation -- 12 Zero Equivalence Testing -- 12.1 Probabilistic Techniques -- 12.2 Deterministic Results -- 12.3 Negative Results -- 13 Univariate Interpolation -- 13.1 Vandermonde Matrices -- 13.2 Lagrange Interpolation -- 13.3 Newton Interpolation -- 13.4 Fast Fourier Transform -- 13.5 Abstract Interpolation -- 14 Multivariate Interpolation -- 14.1 Multivariate Dénse Interpolation -- 14.2 Probabilistic Sparse Interpolation -- 14.3 Deterministic Sparse Interpolation with Degree Bounds -- 14.4 Deterministic Sparse Interpolation without Degree Bounds -- 15 Polynomial GCD’s: Interpolation Algorithms -- 15.1 Heuristic GCD -- 15.2 Univariate Polynomials over ? -- 15.3 Multivariate Polynomials -- 16 Hensel Algorithms -- 16.1 m-adic Completions -- 16.2 One Dimensional Iteration -- 16.3 Multidimensional Iteration -- 16.4 Hensel’s Lemma -- 16.5 Generalizations of Hensel’s Lemma -- 16.6 Zassenhaus’ Formulation of Hensel’s Lemma -- 17 Sparse Hensel Algorithms -- 17.1 Heuristic Presentation -- 17.2 Formal Presentation -- 18 Factoring over Finite Fields -- 18.1 Square Free Decomposition -- 18.2 Distinct Degree Factorization -- 18.3 Finding Linear Factors -- 18.4 Cantor-Zassenhaus Algorithm -- 19 Irreducibility of Polynomials -- 19.1 Deterministic Irreducibility Testing -- 19.2 Counting Prime Factors -- 19.3 Hilbert Irreducibility Theorem -- 19.4 Bertini’s Theorem -- 20 Univariate Factorization -- 20.1 Reductions -- 20.2 Simple Algorithm -- 20.3 Asymptotically Good Algorithms -- 21 Multivariate Factorization -- 21.1 General Reductions -- 21.2 Lifting Multivariate Factorizations -- 21.3 Leading Coefficient Determination -- 21.4 Multivariate Polynomials over Q -- 21.5 Bivariate Polynomials over Fields -- List of symbols. 
520 |a Effective Polynomial Computation is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained. Effective Polynomial Computation provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth. Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and p-adic numbers). Among the unique features of Effective Polynomial Computation is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Computer science—Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Algebra. 
650 0 |a Number theory. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a The Springer International Series in Engineering and Computer Science,  |x 0893-3405 ;  |v 241 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4615-3188-3  |3 Click to view e-book 
907 |a .b32346050  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2147770x  |z 02-26-20 
999 f f |i 131c18d5-2384-5537-a651-23adcb8c198e  |s 39f9c489-415f-5c42-bdbf-6b86c7c5e19c 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1