Melt Rheology and Its Role in Plastics Processing Theory and Applications / by John M Dealy, K.F. Wissbrun.

This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly­ mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, b...

Full description

Saved in:
Bibliographic Details
Main Authors: Dealy, John M. (Author), Wissbrun, K.F (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 1999.
Edition:1st ed. 1999.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • 1. Introduction to Rheology
  • 1.1 What is Rheology?
  • 1.2 Why Rheological Properties are Important
  • 1.3 Stress as a Measure of Force
  • 1.4 Strain as a Measure of Deformation
  • 1.4.1 Strain Measures for Simple Extension
  • 1.4.2 Shear Strain
  • 1.5 Rheological Phenomena
  • 1.5.1 Elasticity; Hooke’s Law
  • 1.5.2 Viscosity
  • 1.5.3 Viscoelasticity
  • 1.5.4 Structural Time Dependency
  • 1.5.5 Plasticity and Yield Stress
  • 1.6 Why Polymeric Liquids are Non-Newtonian
  • 1.6.1 Polymer Solutions
  • 1.6.2 Molten Plastics
  • 1.7 A Word About Tensors
  • 1.7.1 Vectors
  • 1.7.2 What is a Tensor?
  • 1.8 The Stress Tensor
  • 1.9 A Strain Tensor for Infinitesimal Deformations
  • 1.10 The Newtonian Fluid
  • 1.11 The Basic Equations of Fluid Mechanics
  • 1.11.1 The Continuity Equation
  • 1.11.2 Cauchy’s Equation
  • 1.11.3 The Navier-Stokes Equation
  • References
  • 2. Linear Viscoelasticity
  • 2.1 Introduction
  • 2.2 The Relaxation Modulus
  • 2.3 The Boltzmann Superposition Principle
  • 2.4 Relaxation Modulus of Molten Polymers
  • 2.5 Empirical Equations for the Relaxation Modulus
  • 2.5.1 The Generalized Maxwell Model
  • 2.5.2 Power Laws and an Exponential Function
  • 2.6 The Relaxation Spectrum
  • 2.7 Creep and Creep Recovery; The Compliance
  • 2.8 Small Amplitude Oscillatory Shear
  • 2.8.1 The Complex Modulus and the Complex Viscosity
  • 2.8.2 Complex Modulus of Typical Molten Polymers
  • 2.8.3 Quantitative Relationships between G*(?) and MWD
  • 2.8.4 The Storage and Loss Compliances
  • 2.9 Determination of Maxwell Model Parameters
  • 2.10 Start-Up and Cessation of Steady Simple Shear and Extension
  • 2.11 Molecular Theories: Prediction of Linear Behavior
  • 2.11.1 The Modified Rouse Model for Unentangled Melts
  • 2.11.1.1 The Rouse Model for Dilute Solutions
  • 2.11.1.2 The Bueche Modification of the Rouse Theory
  • 2.11.1.3 The Bueche-Ferry Law
  • 2.11.2 Molecular Theories for Entangled Melts
  • 2.11.2.1 Evidence for the Existence of Entanglements
  • 2.11.2.2 The Nature of Entanglement Coupling
  • 2.11.2.3 Reptation
  • 2.11.2.4 The Doi-Edwards Theory
  • 2.11.2.5 The Curtiss-Bird Model
  • 2.11.2.6 Limitations of Reptation Models
  • 2.12 Time-Temperature Superposition
  • 2.13 Linear Behavior of Several Polymers
  • References
  • 3. Introduction to Nonlinear Viscoelasticity
  • 3.1 Introduction
  • 3.2 Nonlinear Phenomena
  • 3.3 Theories of Nonlinear Behavior
  • 3.4 Finite Measures of Strain
  • 3.4.1 The Cauchy Tensor and the Finger Tensor
  • 3.4.2 Strain Tensors
  • 3.4.3 Reference Configurations
  • 3.4.4 Scalar Invariants of the Finger Tensor
  • 3.5 The Rubberlike Liquid
  • 3.5.1 A Theory of Finite Linear Viscoelasticity
  • 3.5.2 Lodge’s Network Theory and the Convected Maxwell Model
  • 3.5.3 Behavior of the Rubberlike Liquid in Simple Shear Flows
  • 3.5.3.1 Rubberlike Liquid in Step Shear Strain
  • 3.5.3.2 Rubberlike Liquid in Steady Simple Shear
  • 3.5.3.3 Rubberlike Liquid in Oscillatory Shear
  • 3.5.3.4 Constrained Recoil of Rubberlike Liquid
  • 3.5.3.5 The Stress Ratio (N1/?) and the Recoverable Shear
  • 3.5.4 The Rubberlike Liquid in Simple Extension
  • 3.5.5 Comments on the Rubberlike Liquid Model
  • 3.6 The BKZ Equation
  • 3.7 Wagner’s Equation and the Damping Function
  • 3.7.1 Strain Dependent Memory Function
  • 3.7.2 Determination of the Damping Function
  • 3.7.3 Separable Stress Relaxation Behavior
  • 3.7.4 Damping Function Equations for Polymeric Liquids
  • 3.7.4.1 Damping Function for Shear Flows
  • 3.7.4.2 Damping Function for Simple Extension
  • 3.7.4.3 Universal Damping Functions
  • 3.7.5 Interpretation of the Damping Function in Terms of Entanglements
  • 3.7.5.1 The Irreversibility Assumption
  • 3.7.6 Comments on the Use of the Damping Function
  • 3.8 Molecular Models for Nonlinear Viscoelasticity
  • 3.8.1 The Doi-Edwards Constitutive Equation
  • 3.9 Strong Flows; The Tendency to Stretch and Align Molecules
  • References
  • 4. Steady Simple Shear Flow and the Viscometric Functions
  • 4.1 Introduction
  • 4.2 Steady Simple Shear Flow
  • 4.3 Viscometric Flow
  • 4.4 Wall Slip and Edge Effects
  • 4.5 The Viscosity of Molten Polymers
  • 4.5.1 Dependence of Viscosity on Shear Rate
  • 4.5.2 Dependence of Viscosity on Temperature
  • 4.6 The First Normal Stress Difference
  • 4.7 Empirical Relationships Involving Viscometric Functions
  • 4.7.1 The Cox-Merz Rules
  • 4.7.2 The Gleissle Mirror Relations
  • 4.7.3 Other Relationships
  • References
  • 5. Transient Shear Flows Used to Study Nonlinear Viscoelasticity
  • 5.1 Introduction
  • 5.2 Step Shear Strain
  • 5.2.1 Finite Rise Time
  • 5.2.2 The Nonlinear Shear Stress Relaxation Modulus
  • 5.2.3 Time-Temperature Superposition
  • 5.2.4 Strain-Dependent Spectrum and Maxwell Parameters
  • 5.2.5 Normal Stress Differences for Single-Step Shear Strain
  • 5.2.6 Multistep Strain Tests
  • 5.3 Flows Involving Steady Simple Shear
  • 5.3.1 Start-Up Flow
  • 5.3.2 Cessation of Steady Simple Shear
  • 5.3.3 Interrupted Shear
  • 5.3.4 Reduction in Shear Rate
  • 5.4 Nonlinear Creep
  • 5.4.1 Time-Temperature Superposition of Creep Data
  • 5.5 Recoil and Recoverable Shear
  • 5.5.1 Creep Recovery
  • 5.5.1.1 Time-Temperature Superposition; Creep Recovery
  • 5.5.2 Recoil During Start-Up Flow
  • 5.5.3 Recoverable Shear Following Steady Simple Shear
  • 5.6 Superposed Deformations
  • 5.6.1 Superposed Steady and Oscillatory Shear
  • 5.6.2 Step Strain with Superposed Deformations
  • 5.7 Large Amplitude Oscillatory Shear
  • 5.8 Exponential Shear; A Strong Flow
  • 5.9 Usefulness of Transient Shear Tests
  • References
  • 6. Extensional Flow Properties and Their Measurement
  • 6.1 Introduction
  • 6.2 Extensional Flows
  • 6.3 Simple Extension
  • 6.3.1 Material Functions for Simple Extension
  • 6.3.2 Experimental Methods
  • 6.3.3 Experimental Observations for LDPE
  • 6.3.4 Experimental Observations for Linear Polymers
  • 6.4 Biaxial Extension
  • 6.5 Planar Extension
  • 6.6 Other Extensional Flows
  • References
  • 7. Rotational and Sliding Surface Rheometers
  • 7.1 Introduction
  • 7.2 Sources of Error for Drag Flow Rheometers
  • 7.2.1 Instrument Compliance
  • 7.2.2 Viscous Heating
  • 7.2.3 End and Edge Effects
  • 7.2.4 Shear Wave Propagation
  • 7.3 Cone-Plate Flow Rheometers
  • 7.3.1 Basic Equations for Cone-Plate Rheometers
  • 7.3.2 Sources of Error for Cone-Plate Rheometers
  • 7.3.3 Measurement of the First Normal Stress Difference
  • 7.4 Parallel Disk Rheometers
  • 7.5 Eccentric Rotating Disks
  • 7.6 Concentric Cylinder Rheometers
  • 7.7 Controlled Stress Rotational Rheometers
  • 7.8 Torque Rheometers
  • 7.9 Sliding Plate Rheometers
  • 7.9.1 Basic Equations for Sliding Plate Rheometers
  • 7.9.2 End and Edge Effects for Sliding Plate Rheometers
  • 7.9.3 Sliding Plate Melt Rheometers
  • 7.9.4 The Shear Stress Transducer
  • 7.10 Sliding Cylinder Rheometers
  • References
  • 8. Flow in Capillaries, Slits and Dies
  • 8.1 Introduction
  • 8.2 Flow in a Round Tube
  • 8.2.1 Shear Stress Distribution
  • 8.2.2 Shear Rate for a Newtonian Fluid
  • 8.2.3 Shear Rate for a Power Law Fluid
  • 8.2.4 The Rabinowitch Correction
  • 8.2.5 The Schümmer Approximation
  • 8.2.6 Wall Slip in Capillary Flow
  • 8.3 Flow in a Slit
  • 8.3.1 Basic Equations for Shear Stress and Shear Rate
  • 8.3.2 Use of a Slit Rheometer to Determine N1
  • 8.3.2.1 Determination of N1 from the Hole Pressure
  • 8.3.2.2 Determination of N1 from the Exit Pressure
  • 8.4 Pressure Drop in Irregular Cross Sections
  • 8.5 Entrance Effects
  • 8.5.1 Experimental Observations
  • 8.5.2 Entrance Pressure Drop—the Bagley End Correction
  • 8.5.3 Rheological Significance of the Entrance Pressure Drop
  • 8.6 Capillary Rheometers
  • 8.7 Flow in Converging Channels
  • 8.7.1 The Lubrication Approximation
  • 8.7.2 Industrial Die Design
  • 8.8 Extrudate Swell
  • 8.9 Extrudate Distortion
  • 8.9.1 Surface Melt Fracture—Sharkskin
  • 8.9.2 Oscillatory Flow in Linear Polymers
  • 8.9.3 Gross Melt Fracture
  • 8.9.4 Role of Slip in Melt Fracture
  • 8.9.5 Gross Melt Fracture Without Oscillations
  • References
  • 9. Rheo-Optics and Molecular Orientation
  • 9.1 Basic Concepts—Interaction of Light and Matter
  • 9.1.1 Refractive Index and Polarization
  • 9.1.2 Absorption and Scattering
  • 9.1.3 Anisotropic Media; Birefringence and Dichroism
  • 9.2 Measurement of Birefringence
  • 9.3 Birefringence and Stress
  • 9.3.1 Stress-Optical Relation
  • 9.3.2 Application of Birefringence Measurements
  • References
  • 10. Effects of Molecular Structure
  • 10.1 Introduction and Qualitative Overview of Molecular Theory
  • 10.2 Molecular Weight Dependence of Zero Shear Viscosity
  • 10.3 Compliance and First Normal Stress Difference
  • 10.4 Shear Rate Dependence of Viscosity
  • 10.5 Temperature and Pressure Dependence
  • 10.5.1 Temperature Dependence of Viscosity
  • 10.5.2 Pressure Dependence of Viscosity
  • 10.6 Effects of Long Chain Branching
  • References
  • 11. Rheology of Multiphase Systems
  • 11.1 Introduction
  • 11.2 Effect of Rigid Fillers
  • 11.2.1 Viscosity
  • 11.2.2 Elasticity
  • 11.3 Deformable Multiphase Systems (Blends, Block Polymers)
  • 11.3.1 Deformation of Disperse Phases and Relation to Morphology
  • 11.3.2 Rheology of Immiscible Polymer Blends
  • 11.3.3 Phase-Separated Block and Graft Copolymers
  • References
  • 12. Chemorheology of Reacting Systems
  • 12.1 Introduction
  • 12.2 Nature of the Curing Reaction
  • 12.3 Experimental Methods for Monitoring Curing Reactions
  • 12.3.1 Dielectric Analysis
  • 12.4 Viscosity of the Pre-gel Liquid
  • 12.5 The Gel Point and Beyond
  • References
  • 13. Rheology of Thermotropic Liquid Crystal Polymers
  • 13.1 Introduction
  • 13.2 Rheology of Low Molecular Weight Liquid Crystals
  • 13.3 Rheology of Aromatic Thermotropic Polyesters
  • 13.4 Relation of Rheology to Processing of Liquid Crystal Polymers
  • References
  • 14. Role of Rheology in Extrusion
  • 14.1 Introduction
  • 14.1.1 Functions of Extruders
  • 14.1.2 Types of Extruders
  • 14.1.3 Screw Extruder Zones
  • 14.2 Analysis of Single Screw Extruder Operation
  • 14.2.