Multicomponent Flow Modeling by Vincent Giovangigli.

The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Ou...

Full description

Saved in:
Bibliographic Details
Main Author: Giovangigli, Vincent (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 1999.
Edition:1st ed. 1999.
Series:Modeling and Simulation in Science, Engineering and Technology,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • 1. Introduction
  • 2. Fundamental Equations
  • 2.1. Introduction
  • 2.2. Conservation equations
  • 2.3. Thermodynamics
  • 2.4. Chemistry
  • 2.5. Transport fluxes
  • 2.6. Entropy
  • 2.7. Boundary conditions
  • 2.8. Notes
  • 2.9. References
  • 3. Approximate and Simplified Models
  • 3.1. Introduction
  • 3.2. One-reaction chemistry
  • 3.3. Small Mach number flows
  • 3.4. Coupling
  • 3.5. Notes
  • 3.6. References
  • 4. Derivation from the Kinetic Theory
  • 4.1. Introduction
  • 4.2. Kinetic framework
  • 4.3. Kinetic entropy
  • 4.4. Enskog expansion
  • 4.5. Zero-order approximation
  • 4.6. First-order approximation
  • 4.7. Transport linear systems
  • 4.8. Notes
  • 4.9. References
  • 5. Transport Coefficients
  • 5.1. Introduction
  • 5.2. Transport algorithms
  • 5.3. Molecular parameters
  • 5.4. Shear viscosity
  • 5.5. Volume viscosity
  • 5.6. Diffusion matrix
  • 5.7. Thermal conductivity
  • 5.8. Thermal diffusion ratios
  • 5.9. Partial thermal conductivity
  • 5.10. Thermal diffusion coefficients
  • 5.11. Notes
  • 5.12. References
  • 6. Mathematics of Thermochemistry
  • 6.1. Introduction
  • 6.2. Thermodynamics with volume densities
  • 6.3. Thermodynamics with mass densities
  • 6.4. Chemistry sources
  • 6.5. Positive equilibrium points
  • 6.6. Boundary equilibrium points
  • 6.7. Inequalities near equilibrium
  • 6.8. A global stability inequality
  • 6.9. Notes
  • 6.10. References
  • 7. Mathematics of Transport Coefficients
  • 7.1. Introduction
  • 7.2. Assumptions on transport coefficients
  • 7.3. Properties of diffusion matrices
  • 7.4. Properties of other coefficients
  • 7.5. Diagonal diffusion
  • 7.6. Diffusion inequalities
  • 7.7. Stefan-Maxwell equations
  • 7.8. Notes
  • 7.9. References
  • 8. Symmetrization
  • 8.1. Introduction
  • 8.2. Vector notation
  • 8.3. Quasilinear form
  • 8.4. Symmetrization and entropic variables
  • 8.5. Normal forms
  • 8.6. Symmetrization for multicomponent flows
  • 8.7. Normal forms for multicomponent flows
  • 8.8. Notes
  • 8.9. References
  • 9. Asymptotic Stability
  • 9.1. Introduction
  • 9.2. Governing equations
  • 9.3. Local dissipative structure
  • 9.4. Global existence theorem
  • 9.5. Decay estimates
  • 9.6. Local dissipativity for multicomponent flows
  • 9.7. Global existence for multicomponent flows
  • 9.8. Notes
  • 9.9. References
  • 10. Chemical Equilibrium Flows
  • 10.1. Introduction
  • 10.2. Governing equations
  • 10.3. Entropy and symmetrization
  • 10.4. Normal forms
  • 10.5. Global existence
  • 10.6. Notes
  • 10.7. References
  • 11. Anchored Waves
  • 11.1. Introduction
  • 11.2. Governing equations
  • 11.3. First properties
  • 11.4. Existence on a bounded domain
  • 11.5. Existence of solutions
  • 11.6. Notes
  • 11.7. References
  • 12. Numerical Simulations
  • 12.1. Introduction
  • 12.2. Laminar flame model
  • 12.3. Computational considerations
  • 12.4. Hydrogen-Air Bunsen flame
  • 12.5. References.