New Difference Schemes for Partial Differential Equations by Allaberen Ashyralyev, Pavel E. Sobolevskii.

The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact differenc...

Full description

Saved in:
Bibliographic Details
Main Authors: Ashyralyev, Allaberen. (Author, http://id.loc.gov/vocabulary/relators/aut), Sobolevskii, Pavel E. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2004.
Edition:1st ed. 2004.
Series:Operator Theory: Advances and Applications, 148
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
LEADER 05133nam a22006375i 4500
001 b3246364
003 MWH
005 20191024101540.0
007 cr nn 008mamaa
008 121227s2004 sz | s |||| 0|eng d
020 |a 9783034879224 
024 7 |a 10.1007/978-3-0348-7922-4  |2 doi 
035 |a (DE-He213)978-3-0348-7922-4 
050 4 |a E-Book 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
100 1 |a Ashyralyev, Allaberen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a New Difference Schemes for Partial Differential Equations  |h [electronic resource] /  |c by Allaberen Ashyralyev, Pavel E. Sobolevskii. 
250 |a 1st ed. 2004. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2004. 
300 |a IX, 446 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 148 
490 1 |a Springer eBook Collection 
505 0 |a 1 Linear Difference Equations -- 1.1 Difference Equations of the First Order -- 1.2 Difference Equations of the Second Order -- 1.3 Difference Equations with Constant Coefficients -- 2 Difference Schemes for First-Order Differential Equations -- 2.1 Single-Step Exact Difference Scheme and Its Applications -- 2.2 Taylor’s Decomposition on Two Points and Its Applications -- 3 Difference Schemes for Second-Order Differential Equations -- 3.1 Two-Step Exact Difference Scheme and Its Applications -- 3.2 Taylor’s Decomposition on Three Points and Its Applications -- 4 Partial Differential Equations of Parabolic Type -- 4.1 A Cauchy Problem. Well-posedness -- 4.2 Difference Schemes Generated by an Exact Difference Scheme -- 4.3 Single-Step Difference Schemes Generated by Taylor’s Decomposition -- 5 Partial Differential Equations of Elliptic Type -- 5.1 A Boundary-Value Problem. Well-posedness -- 5.2 Difference Schemes Generated by an Exact Difference Scheme -- 5.3 Two-Step Difference Schemes Generated by Taylor’s Decomposition -- 6 Partial Differential Equations of Hyperbolic Type -- 6.1 A Cauchy Problem -- 6.2 Difference Schemes Generated by an Exact Difference Scheme -- 6.3 Two-Step Difference Schemes Generated by Taylor’s Decomposition -- 7 Uniform Difference Schemes for Perturbation Problems -- 7.1 A Cauchy Problem for Parabolic Equations -- 7.2 A Boundary-Value Problem for Elliptic Equations -- 7.3 A Cauchy Problem for Hyperbolic Equations -- 8 Appendix: Delay Parabolic Differential Equations -- 8.1 The Initial-Value Differential Problem -- 8.2 The Difference Schemes -- Comments on the Literature. 
520 |a The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities. The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Operator theory. 
650 0 |a Algebra. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
690 |a Electronic resources (E-books) 
700 1 |a Sobolevskii, Pavel E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 148 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-0348-7922-4  |3 Click to view e-book 
907 |a .b32463649  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g sz   |h 0  |i 1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2159529x  |z 02-26-20 
999 f f |i e193ae8e-d55f-559c-8bfb-d140116fe10d  |s 5d47a702-77f9-531d-b6be-233a3f036a04 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d E-resources  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1