Circuit Design for CMOS VLSI by John P. Uyemura.

During the last decade, CMOS has become increasingly attractive as a basic integrated circuit technology due to its low power (at moderate frequencies), good scalability, and rail-to-rail operation. There are now a variety of CMOS circuit styles, some based on static complementary con­ ductance prop...

Full description

Saved in:
Bibliographic Details
Main Author: Uyemura, John P. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 1992.
Edition:1st ed. 1992.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • 1 Introduction to CMOS
  • 1.1 Why Study CMOS?
  • 1.2 Basic Concepts
  • 1.3 Plan of the Book
  • 1.4 References
  • 2 MOSFET Characteristics
  • 2.1 Threshold Voltage
  • 2.2 Current-Voltage Characteristics
  • 2.3 p-Channel MOSFETs
  • 2.4 MOSFET Capacitances
  • 2.5 Junction Leakage Currents
  • 2.6 Parasitic Resistances
  • 2.7 Non-Rectangular MOSFET Gates
  • 2.8 Mobility Variations
  • 2.9 Subthreshold Current
  • 2.10 Temperature Dependence
  • 2.11 Scaling Theory
  • 2.12 Short-Channel Effects
  • 2.13 Narrow-Width Threshold Voltage
  • 2.14 Hot Electrons
  • 2.15 MOSFET Modelling in SPICE
  • 2.16 References
  • 3 The CMOS Inverter
  • 3.1 Circuit Operation
  • 3.2 Inverter Switching Characteristics
  • 3.3 Output Capacitance
  • 3.4 Secondary Parasitic Effects
  • 3.5 Comparison with SPICE
  • 3.6 Inverter Design
  • 3.7 The Power-Delay Product
  • 3.8 Temperature Dependence
  • 3.9 References
  • 4 Static Logic Circuits
  • 4.1 General Structure
  • 4.2 Series-Connected MOSFETs
  • 4.3 NAND Gate
  • 4.4 NOR Gate
  • 4.5 Comparison of NAND and NOR Gates
  • 4.6 OR and AND Gates
  • 4.7 Combinational Logic
  • 4.8 Exclusive-OR and Equivalence
  • 4.9 Structural Variations
  • 4.10 Tri-State Output
  • 4.11 Pseudo-nMOS/pMOS Logic
  • 4.12 Flip-Flops
  • 4.13 Schmitt Trigger
  • 4.14 References
  • 5 CMOS Switch Logic
  • 5.1 CMOS Transmission Gates
  • 5.2 Transmission Gate Model
  • 5.3 Layout Considerations
  • 5.4 TG-Based Switch Logic Gates
  • 5.5 Latches and Flip-Flops
  • 5.6 Array Logic
  • 5.7 Differential CVS Logic
  • 5.8 Complementary Pass-Transistor Logic
  • 5.9 DSL Logic
  • 5.10 References
  • 6 Chip Design
  • 6.1 Isolation
  • 6.2 CMOS Process Examples
  • 6.3 Design Rules
  • 6.4 Basic Layout
  • 6.5 Interconnects
  • 6.6 Data Transmission
  • 6.7 Transmission Line Analysis
  • 6.8 Crosstalk
  • 6.9 Gate Arrays in CMOS
  • 6.10 References
  • 7 Synchronous Logic
  • 7.1 Clock Signals
  • 7.2 Clock Distribution and Skew
  • 7.3 Clocked Static Logic
  • 7.4 Charge Storage Nodes
  • 7.5 Charge Leakage
  • 7.6 Charge Sharing
  • 7.7 Dynamic Logic
  • 7.8 Domino Logic
  • 7.9 Multiple-Output Domino Logic
  • 7.10 Latched Domino Logic
  • 7.11 NORA Logic
  • 7.12 Zipper CMOS Logic
  • 7.13 References
  • 8 Design of Basic Circuits
  • 8.1 Chip Floorplan
  • 8.2 Input Protection Circuits
  • 8.3 Static Gate Sizing
  • 8.4 Off-Chip Driver Circuits
  • 8.5 Timing and Clock Distribution
  • 8.6 Memory Circuits
  • 8.7 References
  • 9 Analog CMOS Circuits
  • 9.1 MOSFET Equations
  • 9.2 Small-Signal MOSFET Model
  • 9.3 Basic Amplifier
  • 9.4 Voltage References
  • 9.5 Current Sources
  • 9.6 Differential Amplifier
  • 9.7 A CMOS Operational Amplifier
  • 9.8 Summary
  • 9.9 References
  • 10 BiCMOS Circuits
  • 10.1 Bipolar Junction Transistors
  • 10.2 BiCMOS Technology
  • 10.3 BiCMOS Inverter
  • 10.4 Comparison of CMOS and BiCMOS Performance
  • 10.5 Circuit Variations
  • 10.6 Logic Formation
  • 10.7 Tri-state Output
  • 10.8 Level Conversion
  • 10.9 Summary
  • 10.10 References.