Infrasound Monitoring for Atmospheric Studies Challenges in Middle Atmosphere Dynamics and Societal Benefits / edited by Alexis Le Pichon, Elisabeth Blanc, Alain Hauchecorne.

Since the publication of the first volume “Infrasound monitoring for atmospheric studies” published in 2010, significant advances were achieved in the fields of engineering, propagation modelling, and atmospheric remote sensing methods. The global infrasound network, which consists of the Internatio...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Le Pichon, Alexis (Editor), Blanc, Elisabeth (Editor), Hauchecorne, Alain (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:2nd ed. 2019.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Table of Contents:
  • Part 1: Instrumentation, network and processing
  • Chapter 1.The IMS Infrasound Network: Status and state-of-the-art design (Julien Mary)
  • Chapter 2. New generations of infrasound sensors: Technological developments and calibration (G. Nief)
  • Chapter 3. New systems for wind noise reduction for infrasonic measurements (Jeremy Webster)
  • Chapter 4. Geoacoustic observations on drifting balloon-borne sensors (Daniel C. Bowman)
  • Chapter 5. Measuring infrasound from the maritime environment (Doug Grimmett)
  • Chapter 6. Advances in operational processing at the International Data Center (Pierrick Mialle)
  • Chapter 7. Infrasound signal detection: Re-examining the component parts that make up detection algorithms (Omar Marcillo)
  • Chapter 8. Explosion source models (Milton A. Garces)
  • Part 2: Observations - From local to global
  • Chapter 9. The ANTARES explosion observed by the US-ARRAY: an unprecedented collection of infrasound phases recorded from the same event (Julien Vergoz)
  • Chapter 10. Characterization of the infrasonic wave field from repeating seismo-acoustic events (Steven J. Gibbons)
  • Chapter 11. On the use of a dense network of seismo-acoustic arrays for near-regional environmental monitoring (Il-Young Che)
  • Chapter 12. Large meteoroids as global infrasound reference events (Christoph Pilger)
  • Chapter 13. Systematic array processing of a decade of global IMS infrasound data (Lars Ceranna)
  • Part 3: Propagation modeling, network performance and inversion methods
  • Chapter 14. Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling (Douglas P. Drob)
  • Chapter 15. Propagation modeling through realistic atmosphere and benchmarking (Roger Waxler)
  • Chapter 16. Internal gravity wave perturbations and their impact on infrasound propagation in the atmosphere (Igor Chunchuzov)
  • Chapter 17. Modeling the detection capability of the global IMS infrasound network (Alexis Le Pichon)
  • Chapter 18. Advances in infrasonic remote sensing methods (Jelle D. Assink)
  • Part 4: Evaluating and improving global circulation and climate models and weather forecasts (GCM)
  • Chapter 19. Continuous middle-atmospheric wind profile observations by Doppler microwave radiometry (Rolf Rüfenacht)
  • Chapter 20. Gravity-wave detection in the mesosphere using airglow spectrometers and meteor radars (R.E. Hibbins)
  • Chapter 21. Detection of infrasound signals and sources using a dense seismic network (Catherine D. de Groot-Hedlin)
  • Chapter 22. Calculating atmospheric gravity waves parameters from infrasound measurements (Graeme Marlton)
  • Chapter 23. The study of sudden stratospheric warmings using infrasound (Pieter S. M. Smets)
  • Chapter 24. Recent dynamic studies on the middle atmosphere at mid- and low-latitudes using Rayleigh Lidar and other technologies (Alain Hauchecorne)
  • Chapter 25. Large scale and transient disturbances and trends: from the ground to the ionosphere (Jan Laštovi?ka)
  • Chapter 26. Temperature trends observed in the middle atmosphere and future directions (P. Keckhut)
  • Chapter 27. Non-orographic gravity waves: representation in climate models and effects on infrasound (D. Cugnet)
  • Chapter 28. Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project (Elisabeth Blanc)
  • Chapter 29. The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics (Andrew J. Charlton-Perez)
  • Part 5: Benefits for monitoring natural hazards
  • Chapter 30. Infrasound for detection, localization and geometrical reconstruction of lightning flashes (Thomas Farges)
  • Chapter 31. Infrasound monitoring as a tool to characterize impacting Near-Earth Objects (NEOs) (Elizabeth A. Silber)
  • Chapter 32. Local volcano infrasound monitoring (Jeffrey B. Johnson)
  • Chapter 33. Volcano infrasound and the International Monitoring System (Robin S. Matoza)
  • Chapter 34. Atmospheric control on ground- and space based remote detection of volcanic ash injection into the atmosphere, and link to early warning systems for aviation hazard mitigation (Benoit Taisne)
  • Chapter 35. Infrasound monitoring of volcano-related hazards for civil protection (Maurizio Ripepe)
  • Chapter 36. Infrasound monitoring of volcanic eruptions and contribution of ARISE to the Volcanic Ash Advisory Centers (Emanuele Marchetti).