Text Analytics with Python A Practitioner's Guide to Natural Language Processing / by Dipanjan Sarkar.

Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve rea...

Full description

Saved in:
Bibliographic Details
Main Author: Sarkar, Dipanjan (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2019.
Edition:2nd ed. 2019.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3250790
003 MWH
005 20190720021624.0
007 cr nn 008mamaa
008 190521s2019 xxu| s |||| 0|eng d
020 |a 9781484243541 
024 7 |a 10.1007/978-1-4842-4354-1  |2 doi 
035 |a (DE-He213)978-1-4842-4354-1 
050 4 |a E-Book 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
100 1 |a Sarkar, Dipanjan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Text Analytics with Python  |h [electronic resource] :  |b A Practitioner's Guide to Natural Language Processing /  |c by Dipanjan Sarkar. 
250 |a 2nd ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XXIV, 674 p. 189 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Chapter 1: Natural Language Processing Basics -- Chapter 2: Python for Natural Language Processing -- Chapter 3: Processing and Understanding Text -- Chapter 4: Feature Engineering for Text Data -- Chapter 5: Text Classification -- Chapter 6: Text summarization and topic modeling -- Chapter 7: Text Clustering and Similarity analysis -- Chapter 8: Sentiment Analysis -- Chapter 9: Deep learning in NLP. 
520 |a Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve real-world case studies leveraging the power of Python. This edition has gone through a major revamp introducing several major changes and new topics based on the recent trends in NLP. We have a dedicated chapter around Python for NLP covering fundamentals on how to work with strings and text data along with introducing the current state-of-the-art open-source frameworks in NLP. We have a dedicated chapter on feature engineering representation methods for text data including both traditional statistical models and newer deep learning based embedding models. Techniques around parsing and processing text data have also been improved with some new methods. Considering popular NLP applications, for text classification, we also cover methods for tuning and improving our models. Text Summarization has gone through a major overhaul in the context of topic models where we showcase how to build, tune and interpret topic models in the context of an interest dataset on NIPS conference papers. Similarly, we cover text similarity techniques with a real-world example of movie recommenders. Sentiment Analysis is covered in-depth with both supervised and unsupervised techniques. We also cover both machine learning and deep learning models for supervised sentiment analysis. Semantic Analysis gets its own dedicated chapter where we also showcase how you can build your own Named Entity Recognition (NER) system from scratch. To conclude things, we also have a completely new chapter on the promised of Deep Learning for NLP where we also showcase a hands-on example on deep transfer learning. While the overall structure of the book remains the same, the entire code base, modules, and chapters will be updated to the latest Python 3.x release. ---------------------------------- Also the key selling points • Implementations are based on Python 3.x and state-of-the-art popular open source libraries in NLP • Covers Machine Learning and Deep Learning for Advanced Text Analytics and NLP • Showcases diverse NLP applications including Classification, Clustering, Similarity Recommenders, Topic Models, Sentiment and Semantic Analysis. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language). 
650 0 |a Big data. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4842-4354-1  |3 Click to view e-book  |t 0 
907 |a .b32507902  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21639528  |z 02-26-20 
999 f f |i 2176b09d-3398-5dba-b7e4-6b5be2942b4e  |s 38570a83-d8f2-537a-8607-f9f9be38426d  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File