Fundamental Aspects of Asymptotic Safety in Quantum Gravity by Zoë H. Slade.

After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided...

Full description

Saved in:
Bibliographic Details
Main Author: Slade, Zoë H. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
Description
Summary:After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided. Secondly, the fundamental requirement of background independence in quantum gravity is successfully implemented. Working within the derivative expansion of conformally reduced gravity, the notion of compatibility is developed, uncovering the underlying reasons for background dependence generically forbidding fixed points in such models. Thirdly, in order to understand the true nature of fixed-point solutions, one needs to study their asymptotic behaviour. The author carefully explains how to find the asymptotic form of fixed point solutions within the f(R) approximation. Finally, the key findings are summarised and useful extensions of the work are identified. The thesis finishes by considering the need to incorporate matter into the formalism in a compatible way and touches upon potential opportunities to test asymptotic safety in the future.
Physical Description:XIII, 134 p. 17 illus., 4 illus. in color. online resource.
ISBN:9783030195076
ISSN:2190-5053
DOI:10.1007/978-3-030-19507-6