Advanced R Statistical Programming and Data Models Analysis, Machine Learning, and Visualization / by Matt Wiley, Joshua F. Wiley.

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples us...

Full description

Saved in:
Bibliographic Details
Main Authors: Wiley, Matt (Author), Wiley, Joshua F. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2019.
Edition:1st ed. 2019.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3260742
003 MWH
005 20191027142101.0
007 cr nn 008mamaa
008 190220s2019 xxu| s |||| 0|eng d
020 |a 9781484228722 
024 7 |a 10.1007/978-1-4842-2872-2  |2 doi 
035 |a (DE-He213)978-1-4842-2872-2 
050 4 |a E-Book 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051010  |2 bisacsh 
072 7 |a UMX  |2 thema 
072 7 |a UMC  |2 thema 
100 1 |a Wiley, Matt.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Advanced R Statistical Programming and Data Models  |h [electronic resource] :  |b Analysis, Machine Learning, and Visualization /  |c by Matt Wiley, Joshua F. Wiley. 
250 |a 1st ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XX, 638 p. 207 illus., 127 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a 1 Univariate Data Visualization -- 2 Multivariate Data Visualization -- 3 Generalized Linear Models 1 -- 4 Generalized Linear Models 2 -- 5 Generalized Additive Models -- 6 Machine Learning: Introduction -- 7 Machine Learning: Unsupervised -- 8 Machine Learning: Supervised -- 9 Missing Data -- 10 Generalized Linear Mixed Models: Introduction -- 11 Generalized Linear Mixed Models: Linear -- 12 Generalized Linear Mixed Models: Advanced -- 13 Modeling IIV -- Bibliography. 
520 |a Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. You will: Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification Address missing data using multiple imputation in R Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability . 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Computer programming. 
650 0 |a Mathematical statistics. 
690 |a Electronic resources (E-books) 
700 1 |a Wiley, Joshua F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4842-2872-2  |3 Click to view e-book  |t 0 
907 |a .b32607428  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21739043  |z 02-26-20 
999 f f |i 4484f725-1604-53bc-a18a-abf64a901a16  |s 86321383-b2d4-5f5a-a0da-f6e1d80bdafa  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File