Mastering Machine Learning with Python in Six Steps A Practical Implementation Guide to Predictive Data Analytics Using Python / by Manohar Swamynathan.

Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two pa...

Full description

Saved in:
Bibliographic Details
Main Author: Swamynathan, Manohar (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2019.
Edition:2nd ed. 2019.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3265265
003 MWH
005 20191002141533.0
007 cr nn 008mamaa
008 191001s2019 xxu| s |||| 0|eng d
020 |a 9781484249475 
024 7 |a 10.1007/978-1-4842-4947-5  |2 doi 
035 |a (DE-He213)978-1-4842-4947-5 
050 4 |a E-Book 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
100 1 |a Swamynathan, Manohar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mastering Machine Learning with Python in Six Steps  |h [electronic resource] :  |b A Practical Implementation Guide to Predictive Data Analytics Using Python /  |c by Manohar Swamynathan. 
250 |a 2nd ed. 2019. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2019. 
300 |a XVII, 457 p. 185 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Chapter 1: Step 1 – Getting Started with Python -- Chapter 2 : Step 2 – Introduction to Machine Learning -- Chapter 3: Step 3 – Fundamentals of Machine Learning -- Chapter 4: Step 4 – Model Diagnosis and Tuning -- Chapter 5: Step 5 – Text Mining, NLP AND Recommender Systems -- Chapter 6: Step 6 – Deep and Reinforcement Learning -- Chapter 7 : Conclusion. 
520 |a Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Artificial intelligence. 
650 0 |a Big data. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4842-4947-5  |3 Click to view e-book  |t 0 
907 |a .b32652653  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21784279  |z 02-26-20 
999 f f |i a979cc97-c49a-5a60-a3ce-d8be1e1e6f5d  |s cc290222-a500-52b1-a65b-84899abb5df8  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File