Embedded Deep Learning Algorithms, Architectures and Circuits for Always-on Neural Network Processing / by Bert Moons, Daniel Bankman, Marian Verhelst.

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost...

Full description

Saved in:
Bibliographic Details
Main Authors: Moons, Bert (Author), Bankman, Daniel (Author), Verhelst, Marian (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3268679
003 MWH
005 20191023141949.0
007 cr nn 008mamaa
008 181023s2019 gw | s |||| 0|eng d
020 |a 9783319992235 
024 7 |a 10.1007/978-3-319-99223-5  |2 doi 
035 |a (DE-He213)978-3-319-99223-5 
050 4 |a E-Book 
072 7 |a TJFC  |2 bicssc 
072 7 |a TEC008010  |2 bisacsh 
072 7 |a TJFC  |2 thema 
100 1 |a Moons, Bert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Embedded Deep Learning  |h [electronic resource] :  |b Algorithms, Architectures and Circuits for Always-on Neural Network Processing /  |c by Bert Moons, Daniel Bankman, Marian Verhelst. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVI, 206 p. 124 illus., 92 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Chapter 1 Embedded Deep Neural Networks -- Chapter 2 Optimized Hierarchical Cascaded Processing -- Chapter 3 Hardware-Algorithm Co-optimizations -- Chapter 4 Circuit Techniques for Approximate Computing -- Chapter 5 ENVISION: Energy-Scalable Sparse Convolutional Neural Network Processing -- Chapter 6 BINAREYE: Digital and Mixed-signal Always-on Binary Neural Network Processing -- Chapter 7 Conclusions, contributions and future work. 
520 |a This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Electronic circuits. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
690 |a Electronic resources (E-books) 
700 1 |a Bankman, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Verhelst, Marian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-99223-5  |3 Click to view e-book  |t 0 
907 |a .b32686791  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21818411  |z 02-26-20 
999 f f |i b2d06ed5-14d5-5abe-8172-6c2eb6456998  |s 5f20a6ca-c80c-5bc0-9240-7d362807df8e  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File