Beginning Apache Pig Big Data Processing Made Easy / by Balaswamy Vaddeman.

Learn to use Apache Pig to develop lightweight big data applications easily and quickly. This book shows you many optimization techniques and covers every context where Pig is used in big data analytics. Beginning Apache Pig shows you how Pig is easy to learn and requires relatively little time to d...

Full description

Saved in:
Bibliographic Details
Main Author: Vaddeman, Balaswamy (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2016.
Edition:1st ed. 2016.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3281152
003 MWH
005 20191026121325.0
007 cr nn 008mamaa
008 161210s2016 xxu| s |||| 0|eng d
020 |a 9781484223376 
024 7 |a 10.1007/978-1-4842-2337-6  |2 doi 
035 |a (DE-He213)978-1-4842-2337-6 
050 4 |a E-Book 
072 7 |a UM  |2 bicssc 
072 7 |a COM051390  |2 bisacsh 
072 7 |a UM  |2 thema 
100 1 |a Vaddeman, Balaswamy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Beginning Apache Pig  |h [electronic resource] :  |b Big Data Processing Made Easy /  |c by Balaswamy Vaddeman. 
250 |a 1st ed. 2016. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2016. 
300 |a XXIII, 274 p. 69 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Chapter 1 - Introduction -- Chapter 2 - Data types -- Chapter 3 - Grunt -- Chapter 4 - Introduction to Pig Latin -- Chapter 5 - Joins and Functions -- Chapter 6 - Pig Latin using Oozie -- Chapter 7 - Introduction to HCatalog -- Chapter 8 - Submitting Pig jobs using Hue -- Chapter 9 - Role of Pig in Apache Falcon -- Chapter 10 - Macros -- Chapter 11 - User defined Functions -- Chapter 12 - Writing your own eval and Filter Functions -- Chapter 13 - Writing your own Load and Store Functions -- Chapter 14 - Know Your Pig latin scripts -- Chapter 15 - Data formats -- Chapter 16 - Optimization -- Chapter 17 - Other Hadoop tools -- Appendix A - Builtin Functions -- Appendix B - Apache Pig in Apache Ambari -- Appendix C - HBaseStorage and ORCSTorage options. 
520 |a Learn to use Apache Pig to develop lightweight big data applications easily and quickly. This book shows you many optimization techniques and covers every context where Pig is used in big data analytics. Beginning Apache Pig shows you how Pig is easy to learn and requires relatively little time to develop big data applications. The book is divided into four parts: the complete features of Apache Pig; integration with other tools; how to solve complex business problems; and optimization of tools. You'll discover topics such as MapReduce and why it cannot meet every business need; the features of Pig Latin such as data types for each load, store, joins, groups, and ordering; how Pig workflows can be created; submitting Pig jobs using Hue; and working with Oozie. You'll also see how to extend the framework by writing UDFs and custom load, store, and filter functions. Finally you'll cover different optimization techniques such as gathering statistics about a Pig script, joining strategies, parallelism, and the role of data formats in good performance. What You Will Learn • Use all the features of Apache Pig • Integrate Apache Pig with other tools • Extend Apache Pig • Optimize Pig Latin code • Solve different use cases for Pig Latin Who This Book Is For All levels of IT professionals: architects, big data enthusiasts, engineers, developers, and big data administrators. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Open source software. 
650 0 |a Computer programming. 
650 0 |a Database management. 
650 0 |a Data structures (Computer science). 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4842-2337-6  |3 Click to view e-book  |t 0 
907 |a .b32811524  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-CWD 
950 |a Professional and Applied Computing (Springer-12059) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2194314x  |z 02-26-20 
999 f f |i 55f692d7-afed-59d0-8fb9-c71cc981a2be  |s 1ee49126-11fe-573e-954a-52bd10320a9b  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File