Mathematical Problems in Data Science Theoretical and Practical Methods / by Li M. Chen, Zhixun Su, Bo Jiang.

This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learn...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Li M. (Author), Su, Zhixun (Author), Jiang, Bo (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3283083
003 MWH
005 20191027033235.0
007 cr nn 008mamaa
008 151215s2015 gw | s |||| 0|eng d
020 |a 9783319251271 
024 7 |a 10.1007/978-3-319-25127-1  |2 doi 
035 |a (DE-He213)978-3-319-25127-1 
050 4 |a E-Book 
072 7 |a UT  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UT  |2 thema 
100 1 |a Chen, Li M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Problems in Data Science  |h [electronic resource] :  |b Theoretical and Practical Methods /  |c by Li M. Chen, Zhixun Su, Bo Jiang. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 213 p. 64 illus., 42 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Introduction: Data Science and BigData Computing -- Overview of Basic Methods for Data Science -- Relationship and Connectivity of Incomplete Data Collection -- Machine Learning for Data Science: Mathematical or Computational -- Images, Videos, and BigData -- Topological Data Analysis -- Monte Carlo Methods and their Applications in Big Data Analysis -- Feature Extraction via Vector Bundle Learning -- Curve Interpolation and Financial Curve Construction -- Advanced Methods in Variational Learning: Segmentation with Intensity Inhomogeneity -- An On-line Strategy of Groups Evacuation From a Convex Region in the Plane -- A New Computational Model of Bigdata. 
520 |a This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods.  For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark.   This book contains three parts.  The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models.  Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks.  Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Computers. 
650 0 |a Computer communication systems. 
650 0 |a Computer science—Mathematics. 
690 |a Electronic resources (E-books) 
700 1 |a Su, Zhixun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Jiang, Bo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-25127-1  |3 Click to view e-book  |t 0 
907 |a .b3283083x  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21962455  |z 02-26-20 
999 f f |i cf8a1de5-8db9-5152-88bb-6f596ba37c11  |s f8108c73-c49b-50b2-a477-b4221bc8060e  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File