Finitely Generated Abelian Groups and Similarity of Matrices over a Field by Christopher Norman.

At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.  However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both...

Full description

Saved in:
Bibliographic Details
Main Author: Norman, Christopher (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2012.
Edition:1st ed. 2012.
Series:Springer Undergraduate Mathematics Series,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3284217
003 MWH
005 20191024012205.0
007 cr nn 008mamaa
008 120124s2012 xxk| s |||| 0|eng d
020 |a 9781447127307 
024 7 |a 10.1007/978-1-4471-2730-7  |2 doi 
035 |a (DE-He213)978-1-4471-2730-7 
050 4 |a E-Book 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
100 1 |a Norman, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finitely Generated Abelian Groups and Similarity of Matrices over a Field  |h [electronic resource] /  |c by Christopher Norman. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 381 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
490 1 |a Springer eBook Collection 
505 0 |a Part 1 :Finitely Generated Abelian Groups: Matrices with Integer Entries: The Smith Normal Form -- Basic Theory of Additive Abelian Groups -- Decomposition of Finitely Generated  Z-Modules. Part 2: Similarity of Square Matrices over a Field: The Polynomial Ring F[x] and Matrices over F[x]- F[x] Modules: Similarity of t xt Matrices over a Field F -- Canonical Forms and Similarity Classes of Square Matrices over a Field.        . 
520 |a At first sight, finitely generated abelian groups and canonical forms of matrices appear to have little in common.  However, reduction to Smith normal form, named after its originator H.J.S.Smith in 1861, is a matrix version of the Euclidean algorithm and is exactly what the theory requires in both cases.  Starting with matrices over the integers, Part 1 of this book provides a measured introduction to such groups: two finitely generated abelian groups are isomorphic if and only if their invariant factor sequences are identical.  The analogous theory of matrix similarity over a field is then developed in Part 2 starting with matrices having polynomial entries: two matrices over a field are similar if and only if their rational canonical forms are equal.  Under certain conditions each matrix is similar to a diagonal or nearly diagonal matrix, namely its Jordan form. The reader is assumed to be familiar with the elementary properties of rings and fields.  Also a knowledge of abstract linear algebra including vector spaces, linear mappings, matrices, bases and dimension is essential, although much of the theory is covered in the text but from a more general standpoint: the role of vector spaces is widened to modules over commutative rings. Based on a lecture course taught by the author for nearly thirty years, the book emphasises algorithmic techniques and features numerous worked examples and exercises with solutions.  The early chapters form an ideal second course in algebra for second and third year undergraduates.  The later chapters, which cover closely related topics, e.g. field extensions, endomorphism rings, automorphism groups, and variants of the canonical forms, will appeal to more advanced students.  The book is a bridge between linear and abstract algebra. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a Algorithms. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4471-2730-7  |3 Click to view e-book  |t 0 
907 |a .b3284217x  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxk  |h 0  |i 1 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21973799  |z 02-26-20 
999 f f |i 02eb148a-d96c-53d6-a982-92b9dc4cddfd  |s 62adabac-1076-5cf0-8223-c32429e14b78  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File