Big Data Factories Collaborative Approaches / edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins.

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Matei, Sorin Adam (Editor), Jullien, Nicolas (Editor), Goggins, Sean P. (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Computational Social Sciences,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3285185
003 MWH
005 20191023232431.0
007 cr nn 008mamaa
008 171128s2017 gw | s |||| 0|eng d
020 |a 9783319591865 
024 7 |a 10.1007/978-3-319-59186-5  |2 doi 
035 |a (DE-He213)978-3-319-59186-5 
050 4 |a E-Book 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
245 1 0 |a Big Data Factories  |h [electronic resource] :  |b Collaborative Approaches /  |c edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2017. 
300 |a VI, 141 p. 18 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Social Sciences,  |x 2509-9574 
490 1 |a Springer eBook Collection 
505 0 |a Chapter1. Introduction -- Part 1: Theoretical Principles and Approaches to Data Factories --  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration -- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science -- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches -- Chapter4. Levels of Trace Data for Social and Behavioral Science Research -- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations -- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures -- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs -- Chapter7. Lessons learned from a decade of FLOSS data collection -- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations -- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes. 
520 |a The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Bioinformatics. 
650 0 |a Application software. 
650 0 |a Research—Moral and ethical aspects. 
690 |a Electronic resources (E-books) 
700 1 |a Matei, Sorin Adam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jullien, Nicolas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Goggins, Sean P.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Computational Social Sciences,  |x 2509-9574 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-59186-5  |3 Click to view e-book  |t 0 
907 |a .b32851856  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i21983471  |z 02-26-20 
999 f f |i 89e96140-3401-5106-a414-224490501e14  |s 8d846a97-9612-5f3c-90b7-3dce34e5672a  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File