An Introduction to Ordinary Differential Equations by Ravi P. Agarwal, Donal O'Regan.

This textbook provides a rigorous and lucid introduction to the theory of ordinary differential equations (ODEs), which serve as mathematical models for many exciting real-world problems in science, engineering, and other disciplines. Key Features of this textbook: Effectively organizes the subject...

Full description

Saved in:
Bibliographic Details
Main Authors: Agarwal, Ravi P. (Author, http://id.loc.gov/vocabulary/relators/aut), O'Regan, Donal. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Universitext,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
LEADER 06538nam a22005895i 4500
001 b3302916
003 MWH
005 20191022072727.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387712765 
024 7 |a 10.1007/978-0-387-71276-5  |2 doi 
035 |a (DE-He213)978-0-387-71276-5 
050 4 |a E-Book 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
100 1 |a Agarwal, Ravi P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Ordinary Differential Equations  |h [electronic resource] /  |c by Ravi P. Agarwal, Donal O'Regan. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 322 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
490 1 |a Springer eBook Collection 
505 0 |a Historical Notes -- Exact Equations -- Elementary First-Order Equations -- First-Order Linear Equations -- Second-Order Linera Equations -- Preliminaries to Existence and Uniqueness of Solutions -- Picard#x0027;s Method of Successive Approximations -- Existence Theorems -- Uniqueness Theorems -- Differential Inequalities -- Continuous Dependence on Initial Conditions -- Preliminary Results from Algebra and Analysis -- Preliminary Results from Algebra and Analysis (Contd.) -- Existence and Uniqueness of Solutions of Systems -- Existence and Uniqueness of Solutions of Systems (Contd.) -- General Properties of Linear Systems -- Fundamental Matrix Solution -- Systems with Constant Coefficients -- Periodic Linear Systems -- Asymptotic Behavior of Solutions of Linear Systems -- Asymptotic Behavior of Solutions of Linear Systems (Contd.) -- Preliminaries to Stability of Solutions -- Stability of Quasi-Linear Systems -- Two-Dimensional Autonomous Systems -- Two-Dimensional Autonomous Systems (Contd.) -- Limit Cycles and Periodic Solutions -- Lyapunov#x0027;s Direct Method for Autonomous Systems -- Lyapunov#x0027;s Direct Method for Nonautonomous Systems -- Higher-Order Exact and Adjoint Equations -- Oscillatory Equations -- Linear Boundary Value Problems -- Green#x0027;s Functions -- Degenerate Linear Boundary Value Problems -- Maximum Principles -- Sturm#x2014;Liouville Problems -- Sturm#x2013;Liouville Problems (Contd.) -- Eigenfunction Expansions -- Eigenfunction Expansions (Contd.) -- Nonlinear Boundary Value Problems -- Nonlinear Boundary Value Problems (Contd.) -- Topics for Further Studies. 
520 |a This textbook provides a rigorous and lucid introduction to the theory of ordinary differential equations (ODEs), which serve as mathematical models for many exciting real-world problems in science, engineering, and other disciplines. Key Features of this textbook: Effectively organizes the subject into easily manageable sections in the form of 42 class-tested lectures Provides a theoretical treatment by organizing the material around theorems and proofs Uses detailed examples to drive the presentation Includes numerous exercise sets that encourage pursuing extensions of the material, each with an "answers or hints" section Covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics Provides excellent grounding and inspiration for future research contributions to the field of ODEs and related areas This book is ideal for a senior undergraduate or a graduate-level course on ordinary differential equations. Prerequisites include a course in calculus. Series: Universitext Ravi P. Agarwal received his Ph.D. in mathematics from the Indian Institute of Technology, Madras, India. He is a professor of mathematics at the Florida Institute of Technology. His research interests include numerical analysis, inequalities, fixed point theorems, and differential and difference equations. He is the author/co-author of over 800 journal articles and more than 20 books, and actively contributes to over 40 journals and book series in various capacities. Donal O’Regan received his Ph.D. in mathematics from Oregon State University, Oregon, U.S.A. He is a professor of mathematics at the National University of Ireland, Galway. He is the author/co-author of 14 books and has published over 650 papers on fixed point theory, operator, integral, differential and difference equations. He serves on the editorial board of many mathematical journals. Previously, the authors have co-authored/co-edited the following books with Springer: Infinite Interval Problems for Differential, Difference and Integral Equations; Singular Differential and Integral Equations with Applications; Nonlinear Analysis and Applications: To V. Lakshmikanthan on his 80th Birthday. In addition, they have collaborated with others on the following titles: Positive Solutions of Differential, Difference and Integral Equations; Oscillation Theory for Difference and Functional Differential Equations; Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
690 |a Electronic resources (E-books) 
700 1 |a O'Regan, Donal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Universitext,  |x 0172-5939 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-0-387-71276-5  |3 Click to view e-book 
907 |a .b33029167  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 3  |i 1 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22160784  |z 02-26-20 
999 f f |i 671454d9-d9e5-5833-8fed-3cd37950caf7  |s c3030c33-0e59-5a0d-8deb-3294dfa8e6c0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d E-resources  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1