Atmospheric Boundary Layers Nature, Theory, and Application to Environmental Modelling and Security / edited by Alexander Baklanov, Branko Grisogono.

Most of practically-used turbulence closure models are based on the concept of downgra- ent transport. Accordingly the models express turbulent uxes of momentum and scalars as products of the mean gradient of the transported property and the corresponding turbulent transport coef cient (eddy viscosi...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Baklanov, Alexander. (Editor, http://id.loc.gov/vocabulary/relators/edt), Grisogono, Branko. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.
LEADER 05138nam a22005895i 4500
001 b3305136
003 MWH
005 20191025151942.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387743219 
024 7 |a 10.1007/978-0-387-74321-9  |2 doi 
035 |a (DE-He213)978-0-387-74321-9 
050 4 |a E-Book 
072 7 |a RB  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
072 7 |a RB  |2 thema 
245 1 0 |a Atmospheric Boundary Layers  |h [electronic resource] :  |b Nature, Theory, and Application to Environmental Modelling and Security /  |c edited by Alexander Baklanov, Branko Grisogono. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a VI, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a Atmospheric boundary layers: nature, theory and applications to environmental modelling and security -- Some modern features of boundary-layer meteorology: a birthday tribute for Sergej Zilitinkevich -- Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes -- Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer -- Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers -- The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere -- The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification -- Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling -- Theoretical considerations of meandering winds in simplified conditions -- Aerodynamic roughness of the sea surface at high winds -- Modelling dust distributions in the atmospheric boundary layer on Mars -- On the turbulent Prandtl number in the stable atmospheric boundary layer -- Micrometeorological observations of a microburst in southern Finland -- Role of land-surface temperature feedback on model performance for the stable boundary layer -- Katabatic flow with Coriolis effect and gradually varying eddy diffusivity -- Parameterisation of the planetary boundary layer for diagnostic wind models. 
520 |a Most of practically-used turbulence closure models are based on the concept of downgra- ent transport. Accordingly the models express turbulent uxes of momentum and scalars as products of the mean gradient of the transported property and the corresponding turbulent transport coef cient (eddy viscosity, K , heat conductivity, K , or diffusivity, K ). Fol- M H D lowing Kolmogorov (1941), turbulent transport coef cients are taken to be proportional to the turbulent velocity scale, u , and length scale, l : T T K ? K ? K ? u l . (1) M H D T T 2 Usually u is identi ed with the turbulent kinetic energy (TKE) per unit mass, E ,and K T is calculated from the TKE budget equation using the Kolmogorov closure for the TKE dissipation rate: ? ? E /t , (2) K K T where t ? l /u is the turbulent dissipation time scale. This approach is justi ed when it T T T is applied to neutral stability ows, where l can be taken to be proportional to the distance T from the nearest wall. However, this method encounters dif culties in strati ed ows (both stable and uns- ble). The turbulent Prandtl number Pr = K /K exhibits essential dependence on the T M H strati cation and cannot be considered as constant. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Atmospheric sciences. 
650 0 |a Air pollution. 
650 0 |a Climate change. 
650 0 |a Remote sensing. 
650 0 |a Planetology. 
650 0 |a Physical geography. 
690 |a Electronic resources (E-books) 
700 1 |a Baklanov, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grisogono, Branko.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-0-387-74321-9  |3 Click to view e-book 
907 |a .b33051367  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22182986  |z 02-26-20 
999 f f |i 47594a03-a449-5015-affa-7348df032053  |s 58ed0fe9-fb67-5009-baac-15c2a4859182 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d E-resources  |e E-Book  |h Library of Congress classification  |i Elec File  |n 1