Language Identification Using Excitation Source Features by K. Sreenivasa Rao, Dipanjan Nandi.

This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Impli...

Full description

Saved in:
Bibliographic Details
Main Authors: Rao, K. Sreenivasa (Author), Nandi, Dipanjan (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3307054
003 MWH
005 20191220130231.0
007 cr nn 008mamaa
008 150415s2015 gw | s |||| 0|eng d
020 |a 9783319177250 
024 7 |a 10.1007/978-3-319-17725-0  |2 doi 
035 |a (DE-He213)978-3-319-17725-0 
050 4 |a E-Book 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
100 1 |a Rao, K. Sreenivasa.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Language Identification Using Excitation Source Features  |h [electronic resource] /  |c by K. Sreenivasa Rao, Dipanjan Nandi. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 119 p. 19 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-737X 
490 1 |a Springer eBook Collection 
505 0 |a Introduction -- Language Identification--A Brief Review -- Implicit Excitation Source Features for Language Identification -- Parametric Excitation Source Features for Language Identification -- Complementary and Robust Nature of Excitation Source Features for Language Identification -- Conclusion. 
520 |a This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivation for exploring the specific feature for LID task, and subsequently discuss the methods to extract those features and finally suggest appropriate models to capture the language specific knowledge from the proposed features. Finally, the book discuss about various combinations of spectral and source features, and the desired models to enhance the performance of LID systems. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Computational linguistics. 
690 |a Electronic resources (E-books) 
700 1 |a Nandi, Dipanjan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning,  |x 2191-737X 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-17725-0  |3 Click to view e-book  |t 0 
907 |a .b33070544  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2220216x  |z 02-26-20 
999 f f |i 73146ca6-97c7-514f-848a-e3f452cd8c26  |s 36155616-2de9-5e88-90a0-ed013d2623c0  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File