Text Mining From Ontology Learning to Automated Text Processing Applications / edited by Chris Biemann, Alexander Mehler.

This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite t...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Biemann, Chris (Editor), Mehler, Alexander (Editor)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Theory and Applications of Natural Language Processing,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3311797
003 MWH
005 20191022111956.0
007 cr nn 008mamaa
008 141219s2014 gw | s |||| 0|eng d
020 |a 9783319126555 
024 7 |a 10.1007/978-3-319-12655-5  |2 doi 
035 |a (DE-He213)978-3-319-12655-5 
050 4 |a E-Book 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
245 1 0 |a Text Mining  |h [electronic resource] :  |b From Ontology Learning to Automated Text Processing Applications /  |c edited by Chris Biemann, Alexander Mehler. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 238 p. 50 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theory and Applications of Natural Language Processing,  |x 2192-032X 
490 1 |a Springer eBook Collection 
505 0 |a Foreword -- PART I. Text Mining Techniques and Methodologies.-  Thomas Eckart, Dirk Goldhahn, and Uwe Quasthoff: Building large resources for text mining -- Hristo Tanev: Learning Textologies: Networks of Linked Word Clusters -- Zornitsa Kozareva: Simple, Fast and Accurate Taxonomy Learning -- Patrick Oesterling, Christian Heine, Gunther H. Weber and Gerik Scheuermann: A Topology-Based Approach to Visualize the Thematic Composition of Document Collections -- Alexander Mehler, Tim vor der Brück, Rüdiger Gleim and Tim Geelhaar: Towards a Network Model of the Coreness of Texts; An Experiment in Classifying Latin Texts using the TTLab Latin Tagger -- PART II. Text Mining Applications. Stefan Bordag and Christian Hänig and Christian Beutenmüller: A structuralist approach for personal knowledge exploration systems on mobile devices -- Frank Oemig and Bernd Blobel: Natural Language Processing Supporting Interoperability in Healthcare -- Veronica Perez-Rosas, Cristian Bologa, Mihai Burzo and Rada Mihalcea: Deception Detection Within and Across Cultures -- Jonathan Sonntag and Manfred Stede: Sentiment Analysis: What’s your Opinion? -- Marten Düring and Antal van den Bosch: Multi-perspective Event Detection in Texts Documenting the 1944 Battle of Arnhem -- Marco Büchler, Philip R. Burns, Martin Müller, Emily Franzini and Greta Franzini: Towards a Historical Text Re-use Detection. 
520 |a This book comprises a set of articles that specify the methodology of text mining, describe the creation of lexical resources in the framework of text mining, and use text mining for various tasks in natural language processing (NLP). The analysis of large amounts of textual data is a prerequisite to build lexical resources such as dictionaries and ontologies, and also has direct applications in automated text processing in fields such as history, healthcare and mobile applications, just to name a few. This volume gives an update in terms of the recent gains in text mining methods and reflects the most recent achievements with respect to the automatic build-up of large lexical resources. It addresses researchers that already perform text mining, and those who want to enrich their battery of methods. Selected articles can be used to support graduate-level teaching. The book is suitable for all readers that completed undergraduate studies of computational linguistics, quantitative linguistics, computer science and computational humanities. It assumes basic knowledge of computer science and corpus processing as well as of statistics. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Application software. 
690 |a Electronic resources (E-books) 
700 1 |a Biemann, Chris.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mehler, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Theory and Applications of Natural Language Processing,  |x 2192-032X 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-12655-5  |3 Click to view e-book  |t 0 
907 |a .b33117974  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i2224959x  |z 02-26-20 
999 f f |i f5b1d0a2-1dee-5c46-97b6-4d1bf7ea6ac5  |s 44d6fbd9-7629-59d8-b454-d22fe5d279f7  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File