Learning and Adaption in Multi-Agent Systems First International Workshop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected Papers / edited by Karl Tuyls, Pieter Jan 't Hoen, Katja Verbeeck, Sandip Sen.

This book contains selected and revised papers of the International Workshop on Lea- ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005 Conference in Utrecht, The Netherlands, July 26. An important aspect in multi-agent systems (MASs) is that the environment evolves over...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Tuyls, Karl (Editor), 't Hoen, Pieter Jan (Editor), Verbeeck, Katja (Editor), Sen, Sandip (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edition:1st ed. 2006.
Series:Lecture Notes in Artificial Intelligence ; 3898
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3313363
003 MWH
005 20191028141011.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540330592 
024 7 |a 10.1007/11691839  |2 doi 
035 |a (DE-He213)978-3-540-33059-2 
050 4 |a E-Book 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
245 1 0 |a Learning and Adaption in Multi-Agent Systems  |h [electronic resource] :  |b First International Workshop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected Papers /  |c edited by Karl Tuyls, Pieter Jan 't Hoen, Katja Verbeeck, Sandip Sen. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a X, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 3898 
490 1 |a Springer eBook Collection 
505 0 |a An Overview of Cooperative and Competitive Multiagent Learning -- Multi-robot Learning for Continuous Area Sweeping -- Learning Automata as a Basis for Multi Agent Reinforcement Learning -- Learning Pareto-optimal Solutions in 2x2 Conflict Games -- Unifying Convergence and No-Regret in Multiagent Learning -- Implicit Coordination in a Network of Social Drivers: The Role of Information in a Commuting Scenario -- Multiagent Traffic Management: Opportunities for Multiagent Learning -- Dealing with Errors in a Cooperative Multi-agent Learning System -- The Success and Failure of Tag-Mediated Evolution of Cooperation -- An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems -- Efficient Reward Functions for Adaptive Multi-rover Systems -- Multi-agent Relational Reinforcement Learning -- Multi-type ACO for Light Path Protection. 
520 |a This book contains selected and revised papers of the International Workshop on Lea- ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005 Conference in Utrecht, The Netherlands, July 26. An important aspect in multi-agent systems (MASs) is that the environment evolves over time, not only due to external environmental changes but also due to agent int- actions. For this reason it is important that an agent can learn, based on experience, and adapt its knowledge to make rational decisions and act in this changing environment autonomously. Machine learning techniques for single-agent frameworks are well established. Agents operate in uncertain environments and must be able to learn and act - tonomously. This task is, however, more complex when the agent interacts with other agents that have potentially different capabilities and goals. The single-agent case is structurally different from the multi-agent case due to the added dimension of dynamic interactions between the adaptive agents. Multi-agent learning, i.e., the ability of the agents to learn how to cooperate and compete, becomes crucial in many domains. Autonomous agents and multi-agent systems (AAMAS) is an emerging multi-disciplinary area encompassing computer science, software engineering, biology, as well as cognitive and social sciences. A t- oretical framework, in which rationality of learning and interacting agents can be - derstood, is still under development in MASs, although there have been promising ?rst results. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Artificial intelligence. 
650 0 |a Computer communication systems. 
690 |a Electronic resources (E-books) 
700 1 |a Tuyls, Karl.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a 't Hoen, Pieter Jan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Verbeeck, Katja.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sen, Sandip.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 3898 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/11691839  |3 Click to view e-book  |t 0 
907 |a .b33133633  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22265259  |z 02-26-20 
999 f f |i 1784373c-6648-533a-ac98-45da2973f666  |s 42239e36-cfed-5cc6-9b8e-8561804ebe27  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File