Fields and Galois Theory by John M. Howie.

The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteri...

Full description

Saved in:
Bibliographic Details
Main Author: Howie, John M. (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: London : Springer London : Imprint: Springer, 2006.
Edition:1st ed. 2006.
Series:Springer Undergraduate Mathematics Series,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3313665
003 MWH
005 20190617141531.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846281815 
024 7 |a 10.1007/978-1-84628-181-5  |2 doi 
035 |a (DE-He213)978-1-84628-181-5 
050 4 |a E-Book 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
100 1 |a Howie, John M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fields and Galois Theory  |h [electronic resource] /  |c by John M. Howie. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a X, 226 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
490 1 |a Springer eBook Collection 
505 0 |a Rings and Fields -- Integral Domains and Polynomials -- Field Extensions -- Applications to Geometry -- Splitting Fields -- Finite Fields -- The Galois Group -- Equations and Groups -- Some Group Theory -- Groups and Equations -- Regular Polygons -- Solutions. 
520 |a The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteric problem, for they were the genesis of modern abstract algebra. This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include: rings and fields integral domains and polynomials field extensions and splitting fields applications to geometry finite fields the Galois group equations Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-84628-181-5  |3 Click to view e-book  |t 0 
907 |a .b33136658  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxk  |h 0  |i 1 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22268273  |z 02-26-20 
999 f f |i dbaa48a7-9527-59b4-b7c5-7ef256582ab9  |s 7793f7fd-93b5-530e-b097-97db8535a771  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File