Form Versus Function: Theory and Models for Neuronal Substrates by Mihai Alexandru Petrovici.

This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with th...

Full description

Saved in:
Bibliographic Details
Main Author: Petrovici, Mihai Alexandru (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3316710
003 MWH
005 20191024161148.0
007 cr nn 008mamaa
008 160719s2016 gw | s |||| 0|eng d
020 |a 9783319395524 
024 7 |a 10.1007/978-3-319-39552-4  |2 doi 
035 |a (DE-He213)978-3-319-39552-4 
050 4 |a E-Book 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
100 1 |a Petrovici, Mihai Alexandru.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Form Versus Function: Theory and Models for Neuronal Substrates   |h [electronic resource] /  |c by Mihai Alexandru Petrovici. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXVI, 374 p. 150 illus., 101 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
490 1 |a Springer eBook Collection 
505 0 |a Prologue -- Introduction: From Biological Experiments to Mathematical Models -- Artificial Brains: Simulation and Emulation of Neural Networks -- Dynamics and Statistics of Poisson-Driven LIF Neurons -- Cortical Models on Neuromorphic Hardware -- Probabilistic Inference in Neural Networks -- Epilogue. 
520 |a This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models. The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail. The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author’s recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks. The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Physics. 
650 0 |a Neural networks (Computer science) . 
650 0 |a Neurobiology. 
650 0 |a Neurosciences. 
650 0 |a Computer simulation. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-3-319-39552-4  |3 Click to view e-book  |t 0 
907 |a .b33167102  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g gw   |h 0  |i 1 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22298721  |z 02-26-20 
999 f f |i 02b66b70-d9ee-5089-b886-c7d3a9476a04  |s 3c41b468-4e6c-53db-a36b-cf02ab0ac665  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File