Comparing Distributions by Olivier Thas.

Comparing Distributions refers to the statistical data analysis that encompasses the traditional goodness-of-fit testing. Whereas the latter includes only formal statistical hypothesis tests for the one-sample and the K-sample problems, this book presents a more general and informative treatment by...

Full description

Saved in:
Bibliographic Details
Main Author: Thas, Olivier (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2010.
Edition:1st ed. 2010.
Series:Springer Series in Statistics,
Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3328976
003 MWH
005 20191025221921.0
007 cr nn 008mamaa
008 130821s2010 xxu| s |||| 0|eng d
020 |a 9780387927107 
024 7 |a 10.1007/978-0-387-92710-7  |2 doi 
035 |a (DE-He213)978-0-387-92710-7 
050 4 |a E-Book 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
100 1 |a Thas, Olivier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Comparing Distributions  |h [electronic resource] /  |c by Olivier Thas. 
250 |a 1st ed. 2010. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
490 1 |a Springer eBook Collection 
505 0 |a One-Sample Problems -- Preliminaries (Building Blocks) -- Graphical Tools -- Smooth Tests -- Methods Based on the Empirical Distribution Function -- Two-Sample and K-Sample Problems -- Preliminaries (Building Blocks) -- Graphical Tools -- Some Important Two-Sample Tests -- Smooth Tests -- Methods Based on the Empirical Distribution Function -- Two Final Methods and Some Final Thoughts. 
520 |a Comparing Distributions refers to the statistical data analysis that encompasses the traditional goodness-of-fit testing. Whereas the latter includes only formal statistical hypothesis tests for the one-sample and the K-sample problems, this book presents a more general and informative treatment by also considering graphical and estimation methods. A procedure is said to be informative when it provides information on the reason for rejecting the null hypothesis. Despite the historically seemingly different development of methods, this book emphasises the similarities between the methods by linking them to a common theory backbone. This book consists of two parts. In the first part statistical methods for the one-sample problem are discussed. The second part of the book treats the K-sample problem. Many sections of this second part of the book may be of interest to every statistician who is involved in comparative studies. The book gives a self-contained theoretical treatment of a wide range of goodness-of-fit methods, including graphical methods, hypothesis tests, model selection and density estimation. It relies on parametric, semiparametric and nonparametric theory, which is kept at an intermediate level; the intuition and heuristics behind the methods are usually provided as well. The book contains many data examples that are analysed with the cd R-package that is written by the author. All examples include the R-code. Because many methods described in this book belong to the basic toolbox of almost every statistician, the book should be of interest to a wide audience. In particular, the book may be useful for researchers, graduate students and PhD students who need a starting point for doing research in the area of goodness-of-fit testing. Practitioners and applied statisticians may also be interested because of the many examples, the R-code and the stress on the informative nature of the procedures. Olivier Thas is Associate Professor of Biostatistics at Ghent University. He has published methodological papers on goodness-of-fit testing, but he has also published more applied work in the areas of environmental statistics and genomics. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 0 |a Social sciences. 
650 0 |a Biostatistics. 
650 0 |a Data mining. 
650 0 |a Operations research. 
650 0 |a Decision making. 
690 |a Electronic resources (E-books) 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-0-387-92710-7  |3 Click to view e-book  |t 0 
907 |a .b33289761  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g xxu  |h 0  |i 1 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22421385  |z 02-26-20 
999 f f |i 7f342e96-2768-5401-8c08-57c4dba222b7  |s 6c4c30cd-6b91-5a31-a27b-3d65b9de0efc  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File