Artificial Intelligence Methods in the Environmental Sciences edited by Sue Ellen Haupt, Antonello Pasini, Caren Marzban.

How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence techniques, including: -neural networks -decision tree...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Haupt, Sue Ellen (Editor), Pasini, Antonello (Editor), Marzban, Caren (Editor)
Format: eBook
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2009.
Edition:1st ed. 2009.
Series:Springer eBook Collection.
Subjects:
Online Access:Click to view e-book
Holy Cross Note:Loaded electronically.
Electronic access restricted to members of the Holy Cross Community.

MARC

LEADER 00000nam a22000005i 4500
001 b3330309
003 MWH
005 20191028152329.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9781402091193 
024 7 |a 10.1007/978-1-4020-9119-3  |2 doi 
035 |a (DE-He213)978-1-4020-9119-3 
050 4 |a E-Book 
072 7 |a RN  |2 bicssc 
072 7 |a SCI026000  |2 bisacsh 
072 7 |a RN  |2 thema 
245 1 0 |a Artificial Intelligence Methods in the Environmental Sciences  |h [electronic resource] /  |c edited by Sue Ellen Haupt, Antonello Pasini, Caren Marzban. 
250 |a 1st ed. 2009. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2009. 
300 |a VIII, 424 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer eBook Collection 
505 0 |a to AI for Environmental Science -- Environmental Science Models and Artificial Intelligence -- Basic Statistics and Basic AI: Neural Networks -- Performance Measures and Uncertainty -- Decision Trees -- to Genetic Algorithms -- to Fuzzy Logic -- Missing Data Imputation Through Machine Learning Algorithms -- Applications of AI in Environmental Science -- Nonlinear Principal Component Analysis -- Neural Network Applications to Solve Forward and Inverse Problems in Atmospheric and Oceanic Satellite Remote Sensing -- Implementing a Neural Network Emulation of a Satellite Retrieval Algorithm -- Neural Network Applications to Developing Hybrid Atmospheric and Oceanic Numerical Models -- Neural Network Modeling in Climate Change Studies -- Neural Networks for Characterization and Forecasting in the Boundary Layer via Radon Data -- Addressing Air Quality Problems with Genetic Algorithms: A Detailed Analysis of Source Characterization -- Reinforcement Learning of Optimal Controls -- Automated Analysis of Spatial Grids -- Fuzzy Logic Applications -- Environmental Optimization: Applications of Genetic Algorithms -- Machine Learning Applications in Habitat Suitability Modeling. 
520 |a How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence techniques, including: -neural networks -decision trees -genetic algorithms -fuzzy logic Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. The book is a scientific as well as a cultural blend: one culture entwines ideas with a thread, while another links them with a red line. Thus, a “red thread” ties the book together and weaves the fabric of the methods into a tapestry that pictures the ‘natural’ data-driven artificial intelligence methods in the light of the more traditional modeling techniques. The international authors, who are recognized major experts in their respective fields, bring to life ways to apply artificial intelligence to problems in the environmental sciences, demonstrating the power of these data-based methods. 
590 |a Loaded electronically. 
590 |a Electronic access restricted to members of the Holy Cross Community. 
650 0 |a Environment. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Environmental sciences. 
650 0 |a Physics. 
650 0 |a Earth sciences. 
690 |a Electronic resources (E-books) 
700 1 |a Haupt, Sue Ellen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pasini, Antonello.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Marzban, Caren.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Springer eBook Collection. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://doi.org/10.1007/978-1-4020-9119-3  |3 Click to view e-book  |t 0 
907 |a .b33303095  |b 04-18-22  |c 02-26-20 
998 |a he  |b 02-26-20  |c m  |d @   |e -  |f eng  |g ne   |h 0  |i 1 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646) 
902 |a springer purchased ebooks 
903 |a SEB-COLL 
945 |f  - -   |g 1  |h 0  |j  - -   |k  - -   |l he   |o -  |p $0.00  |q -  |r -  |s b   |t 38  |u 0  |v 0  |w 0  |x 0  |y .i22434719  |z 02-26-20 
999 f f |i 88f40ff5-6a0a-5fa0-86fa-b61cf469da4f  |s 8bdde95e-3a64-5415-80ec-3163356b5f59  |t 0 
952 f f |p Online  |a College of the Holy Cross  |b Main Campus  |c E-Resources  |d Online  |t 0  |e E-Book  |h Library of Congress classification  |i Elec File